摘要
证明了(1)■中真子域D上的Apollonian度量αD是拟共形映射的拟不变量;(2)■中严格一致域是拟共形不变的;(3)■中的Jordan域D是拟圆当且仅当D是严格一致域,作为应用,进一步得到了Apollonian边界条件,拟共形映射和局部Lipschitz映射之间的关系。
This paper proves: (1) The Apollonian metric aD of a proper subdomain D ∈ R^-n is a quasi-invariant metric under quasiconformal mappings; (2) The strictly uniform domains of R^-n are invariant under quasiconformal mappings; (3) A Jordan domain D ∈R^-2 is a quasidisk if and only if D is a strictly uniform domain. Furthermore, as applications, some relations between Apollonian boundary condition, quasiconformal mappings and lo- cally Lipschitz mappings is obtained.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第4期519-524,共6页
Chinese Annals of Mathematics
基金
国家重点基础研究计划(973计划)基金(No.2006CB708304)
国家自然科学基金(No.10471039
No.10571048)
浙江省教育厅重点基金(No.20060306)资助的项目。