期刊文献+

Apollonian度量与Apollonian边界条件

The Apollonian Metric and Apollonian Boundary Condition
下载PDF
导出
摘要 证明了(1)■中真子域D上的Apollonian度量αD是拟共形映射的拟不变量;(2)■中严格一致域是拟共形不变的;(3)■中的Jordan域D是拟圆当且仅当D是严格一致域,作为应用,进一步得到了Apollonian边界条件,拟共形映射和局部Lipschitz映射之间的关系。 This paper proves: (1) The Apollonian metric aD of a proper subdomain D ∈ R^-n is a quasi-invariant metric under quasiconformal mappings; (2) The strictly uniform domains of R^-n are invariant under quasiconformal mappings; (3) A Jordan domain D ∈R^-2 is a quasidisk if and only if D is a strictly uniform domain. Furthermore, as applications, some relations between Apollonian boundary condition, quasiconformal mappings and lo- cally Lipschitz mappings is obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第4期519-524,共6页 Chinese Annals of Mathematics
基金 国家重点基础研究计划(973计划)基金(No.2006CB708304) 国家自然科学基金(No.10471039 No.10571048) 浙江省教育厅重点基金(No.20060306)资助的项目。
关键词 Apollonian度量 Apollonian边界条件 严格一致域 拟圆 LIPSCHITZ映射 Apollonian metric, Apollonian boundary condition, Strictly uniform domain, Quasidisk, Lipschitz mapping
  • 相关文献

参考文献9

  • 1Beardon A.F.,The Apollonian metric of a domain in Rn[M]//Duren P.(ed.),Quasiconformal Mappings and Analysis,New York:Springer-Verlag,1998:91-101.
  • 2Barbilian D.,Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Jordanschen Bereiche[J],Casopsis Mathematiky a Fysiky,1934-1935,64:182-183.
  • 3Gehring F.W.and Hag K.,The Apollonian metric and quasiconformal mappings[J],Contemp.Math.,2000,256:143-163.
  • 4Hasto.P.A.,The Apollonian metric:uniformity and quasiconvexity[J],Ann.Acad.Sci.Fenn.Math.,2003,28(2):385-414.
  • 5Ibragimov Z.,Conformality of the Apollonian metric[J],Comput.Methods Funct.Theory,2003,3(1-2):397-411.
  • 6Gehring F.W.and Osgood B.G.,Uniform domains and the quasihyperbolic metric[J],J.Analyses Math.,1979,36:50-74.
  • 7Gehring F.W.and Matrio O.,Lipschitz classes and quasiconformal mappings[J],Ann.Acad.Sci.Fenn.Math.,1985,10:203-219.
  • 8Gehring F.W.,Characterizations of quasidisks[M]//Bojarski B.(ed.),Quasiconformal Geometry and Dynamics,Warsaw:Banach Center Publ.,1999:11-41.
  • 9Gehring F.W.and Palka B.P.,Quasiconformally homogeneous domains[J],J.Analyse Math.,1976,30:172-199.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部