期刊文献+

Beurling-Ahlfors延拓与调和映照 被引量:1

Beurling-Ahlfors Extensions and Harmonic Mappings
下载PDF
导出
摘要 研究BA延拓和调和映照的关系,首先,给出了BA延拓为双曲调和的一个必要条件,特别地,若边界对应h局部是C^2和奇的,则其BA延拓不是双曲调和的。其次,证明了若h是分段C^2的则其BA延拓不是π调和的,除非h(x)=ax+b,x∈R. This paper studies the connection between BA-extensions and harmonic mappings. Firstly, the necessary condition for a BA-extension to be hyperbolic harmonic is obtained. Particularly, if a boundary correspondence h is locally in C^2 and odd, then the BA-extension of h is not hyperbolic harmonic. Secondly, if h is in C^2 piecewisely, then the BA-extension of h is not π-harmonic unless h(x) = ax + b, x ∈ R.
作者 陈行堤
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第4期537-544,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271077) 福建省自然科学基金(No.S0650019)资助的项目。
关键词 拟共形映照 调和映照 拟对称同胚 Quasiconformal mappings, Harmonic mappings, Quasisymmetric homeomorphisms,
  • 相关文献

参考文献10

  • 1Beurling S.L.and Ahlfors L.V.,The boundary correspondence for quasiconformal mappings[J],Acta Math.,1956,96:125-142.
  • 2Douady A.and Earle C.J.,Conformally natural extension of homeomorphism of the circle[J],Acta.Math.,1986,157:23-48.
  • 3Kalaj D.and Pavlovic M.,Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J],Ann.Acad.Sci.Fenn.Math.,2005,30:159-165.
  • 4Li P.and Tam L.-F.,Uniqueness and regularity of proper harmonic maps[J],Ann.of Math.,1993,137:167-201.
  • 5Li P.and Tam L.-F.,Uniqueness and regularity of proper harmonic maps Ⅱ[J],Indiana University Math.,1993,42:591-635.
  • 6Liu L.and Yao H.,The Douady-Earle extension is not always harmonic[R],Preprint.
  • 7McMullen C.T.,Renormalization and 3-manifolds which fiber over the circle[M]//Annnals of Mathematics Studies,142,Princeton:Princeton University Press,1996.
  • 8Schoen R.M.,The role of harmonic mappings in rigidity and deformation problems[J],Complex Geometry (Osaka 1990),Lecture Notes in Pure and Appl.Math.,1993,143:179-200.
  • 9Sun Z.,Some properties of Beurling-Ahlfors extension[R],Preprint.
  • 10Tukia P.,Quasiconformal extension of a quasisymmetric compatible with a M(o)bius group[J],Acta.Math.,1985,154:153-193.

同被引文献12

  • 1EFREMOVICH V A,TIKHOMITOVA E.Equimorphisms of hyperbolic spaces[J].Izv Akad Nauk SSSR SerMath,1964,28(5):1139-1144.
  • 2TUKIA P.Quasiconformal extension of quasisymmetric mappings compatible with a Mbius group[J].Acta Math,1985,154(3/4):153-193.
  • 3DOUADY A,EARLE C.Conformally natural extension of homeomorphi-sms of the circle[J].Acta Math,1986,157(1):23-48.
  • 4SULLIVAN D.On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions[J].Ann ofMath Stud,1981,97:456-496.
  • 5NORTON A,SULLIVAN D.Wandering domains and invariant conformal structures for mappings of the 2-torus[J].Ann Acad Sci Fenn Math,1996,21:51-68.
  • 6EPSTEIN D B A,MARKOVIC V.Extending homeomorphisms of the circle to quasiconformal homeomorphisms ofthe disk[J].Geom Topol,2007,11:517-595.
  • 7IBRAGIMOV Z.Quasi-isometric extensions of quasisymmetric mappings of the real line compatible with composi-tion[J].Ann Acad Sci Fenn Math,2010,35:221-233.
  • 8HARDT R,WOLF M.Harmonic extensions of quasiconformal maps to hyperbolic space[J].Indiana Univ Math,1997,46:155-163.
  • 9FOTIADIS A.Harmonic extensions of symmetric maps[J].Calc Var,2009,35(3):271-278.
  • 10BEARDON A F.Geometry of discrete groups[M].New York:Spring-Verlag,1995.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部