摘要
研究BA延拓和调和映照的关系,首先,给出了BA延拓为双曲调和的一个必要条件,特别地,若边界对应h局部是C^2和奇的,则其BA延拓不是双曲调和的。其次,证明了若h是分段C^2的则其BA延拓不是π调和的,除非h(x)=ax+b,x∈R.
This paper studies the connection between BA-extensions and harmonic mappings. Firstly, the necessary condition for a BA-extension to be hyperbolic harmonic is obtained. Particularly, if a boundary correspondence h is locally in C^2 and odd, then the BA-extension of h is not hyperbolic harmonic. Secondly, if h is in C^2 piecewisely, then the BA-extension of h is not π-harmonic unless h(x) = ax + b, x ∈ R.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第4期537-544,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10271077)
福建省自然科学基金(No.S0650019)资助的项目。
关键词
拟共形映照
调和映照
拟对称同胚
Quasiconformal mappings, Harmonic mappings, Quasisymmetric homeomorphisms,