摘要
利用锥拉伸与锥压缩型的Guo-Krasnoselskii不动点定理考察了非线性方程u″(t)+h(t)f(t,u(t)) =0的两点边值问题的正解.f(t,u)是局部本性有界的,只要f(t,u)在某些有界集合上的本性高度是适当的,则该问题可以具有n个正解,其中n是一个任意的正整数。
The positive solutions are considered for a class of two-point boundary value problems of the nonlinear equation u"(t) + h(t)f(t, u(t)) = 0, by applying the Guo-Kraxnoselskii fixed point theorems of cone expansion-compression type. In this paper, f(t, u) is locallyessentially bounded. The main results show that the problem may have n positive solutions provided the essential heights of f(t, u) are appropriate on some bounded sets, where n is an arbitrary positive integral number.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第4期581-588,共8页
Chinese Annals of Mathematics
关键词
非线性常微分方程
边值问题
奇异性
正解
存在性
多解性
Nonlinear ordinary differential equation, Boundary value problem,Singularity, Positive solution, Existence, Multiplicity