期刊文献+

中低温太阳热能的甲醇重整制氢能量转换机理研究 被引量:7

ENERGY CONVERSION MECHANISM OF HYDROGEN PRODUCTION WITH METHANOL STEAM REFORMING BY MID-AND-LOW TEMPERATURE SOLAR THERMAL ENERGY
下载PDF
导出
摘要 通过甲醇-水蒸汽化学反应,本文提出中低温太阳热能与甲醇重整反应结合的制氢新方法,探讨了中低温太阳热能与甲醇重整制氢过程的能量转换机理,分析了不同压力条件下的水碳比、反应温度对中低温太阳热能-甲醇重整制氢的影响规律。研究结果表明:集热180~240℃的低品位太阳热能(品位为0.34~0.42)将能更好地与甲醇重整反应所需的品位相匹配。在反应压力为1×1.01325×10^5 Pa,反应产物中H_2浓度可有望达到72%~75%,中低温太阳热能转化为化学能占燃料化学能的份额可达12%。该研究为低能耗制取清洁燃料氢提供了一条新途径。 In this paper we proposed a novel approach for the solar hydrogen production which integrated methanol steam reforming and mid-and-low temperature solar thermal energy, and investigated its mechanism of energy conversion based on the second-law thermodynamics. The influence of the operation pressures and temperatures of methanol fuel, as well as the influence of molar ratios of water to methanol, has been analyzed. Study indicates that low-grade solar thermal energy at temperatures around 180-240℃ (energy level is 0.34-0.42) can further match the need of the energy level of the methanol steam reforming. Under the operation pressure of 1 ×1.01325 ×10^5 Pa, the concentration of hydrogen of 72%0-75% in the syngas was obtained. Also, the ratio that mid-and-low temperature solar thermal energy converted into chemical energy accounts for the fuel energy reached 12% maximally. The promising results obtained in this study can provide a new approach for hydrogen production with low energy consumption.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2007年第5期729-732,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目资助(No.90210032)
关键词 中低温太阳热能 制氢 甲醇重整反应 mid-and-low temperature solar thermal energy hydrogen production methanol steam reforming
  • 相关文献

参考文献7

  • 1Steinfeld A. Solar Thermochemical Production of Hydrogen-a Review. Solar Energy,2005,78:603-615
  • 2Agarwal V, Patel S, Pant K K. H2 Production by Steam Reforming of Methanol over Cu/Zno/Al2O3 Catalysts: Transient Deactivation Kinetics Modeling. Applied Catalysis A: General, 2005, 279(1-2): 155-164
  • 3John A D, William A B. Solar Engineering of Thermal Process. New York: John Wiley & Sons Inc., 1991. 376- 377
  • 4Ishida M, Kawamura K. Energy and Exergy Analysis of a Chemical Process System with Distributed Parameters Based on the Enthalpy-Direction Factor Diagram. Industrial Engineering and Chemistry Process Design & Development, 1982, 21(4): 690-495
  • 5金红光,洪慧,王宝群,韩巍,林汝谋.化学能与物理能综合梯级利用原理[J].中国科学(E辑),2005,35(3):299-313. 被引量:53
  • 6韩巍.多能源互补的多功能能源系统及其集成机理:[博士论文].北京:中国科学院研究生院,2005
  • 7隋军,金红光,林汝谋,王志峰.太阳能甲醇分解能量转换机理实验研究[J].工程热物理学报,2005,26(3):361-364. 被引量:5

二级参考文献28

  • 1Hong H, Jin H, Ji J, Wang Z, et al. Solar Thermal Power Cycle with Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy. J. Solar Energy, 2005, 78(1): 49-58.
  • 2Ishida M, Kawamura K. Energy and Exergy Analysis of a Chemical Process System with Distributed Parameters Based on the Energy-direction Factor Diagram. Industrial Engineering and Chemistry Process Design & Development, 1982, 21:690-702.
  • 3蔡睿贤 金红光 林汝谋.21世纪100个交叉科学:能源动力系统与环境协调相容的难题[M].北京:科学出版社,2005.366-371.
  • 4Klaeyle M M S, Laurent R, Nandjee F. New cycles for methanol-fuels gas turbines. ASME Paper 83-GT-60,1983.
  • 5Davies D G, Woodley N H, Foster-Pegg R W, et al. Improved combustion turbine efficiency with reformed alcohol fuels. ASME Paper 83-GT-60, 1983.
  • 6Cai R. Alcohol fuel gas turbines and its efficiency. Proceedings of the Eighth International Symposium on Alcohol Fuel, 1988.
  • 7Carapellucci R, Cau G, Cipollone R. Capabilities of the internal heat recovery for increasing the efficiency of gas turbine power plants. ASME Cogen-Turbo Power, Bournemouth, September, 1993.21-23.
  • 8Kesser K F, Hoffman M A, Baughn J W. Analysis of a basic chemically recuperated gas turbine power Plant. ASME J Engineering for Gas Turbines and Power, 1994, 116: 277-284.
  • 9Harvey Simon, Kane N^+ Diaye. Analysis of a gas turbine cycle with chemical recuperation using ASPEN.Proceedings of the Inter Conference ECOS 1996, STOCKHOLM, SWEDEN, 1996. 297-304.
  • 10Abdallah H, Facchini B. Part load performance of chemically recuperated gas turbine compared to other advanced cycle. ASME TURBO-EXPO'98 Conference, Stockholm, Sweden, 1998.

共引文献56

同被引文献70

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部