期刊文献+

基于粒子滤波的MIMO-OFDM时变信道半盲估计 被引量:12

Particle filtering based semi-blind estimation for MIMO-OFDM time-varying channel
下载PDF
导出
摘要 提出一种基于粒子滤波的MIMO-OFDM时变信道半盲估计方法。首先,对粒子滤波算法进行改进,通过对采样粒子分布进行局部优化调整,提出一种局部优化粒子滤波算法。然后,将该粒子滤波算法用于MIMO-OFDM时变信道估计。由于该信道估计过程在频域进行,因而无需已知(或估计)多径信道长度。与现有时变信道半盲估计方法相比,本方法具有估计误差低、对非高斯噪声顽健性强等特点,从而有效改善了接收端的符号检测性。计算机仿真结果证明了本方法的有效性。 A semi-blind channel estimation method based on the particle filtering was proposed for the MIMO-OFDM wireless communication system. By optimizing the particles distribution locally, the traditional particle filtering algorithm was modified, and a local optimized particle filtering was proposed. This local optimized particle filtering can achieve the low MSE, and improve the precision of the MIMO-OFDM time-varying channel estimation. Since this method was performed in frequency domain, it was not necessary to know (or estimate) the length of the channel. Compared with existing approaches, the proposed method was more robust to the non-gauss distribution noise and the detection performance is nearly optimal. The simulation results show the effectiveness of the proposed method.
出处 《通信学报》 EI CSCD 北大核心 2007年第8期67-75,共9页 Journal on Communications
关键词 MIMO-OFDM 时变信道估计 粒子滤波 序贯蒙特卡洛 MIMO-OFDM time-varying channel estimation particle filtering sequential Monte Carlo
  • 相关文献

参考文献17

  • 1FOSCHINI G J.Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J].Bell Labs Technical Journal,1996,1(2):41-59.
  • 2ALAMOUTI S M.A simple transmit diversity technique for wireless communications[J].IEEE Selected Areas in Communication,1998,16(8):1451-1458.
  • 3HAYKIN S,SAYED A H,ZEIDLER J R,et al.Adaptive tracking of linear time-variant systems by extended RLS algorithms[J].IEEE Transactions on Signal Processing,1997,45:1118-1128.
  • 4TSATSANIS M K,GIANNAKIS G B,ZHOU G.Estimation and equalization of fading channels with random coefficients[J].Signal Processing,1996,53(2):211-229.
  • 5LIU Z,MA X,GIANNAKIS G.Space-time coding and Kalman filtering for time-selective fading channels[J].IEEE Transactions on Communications,2002,50(2):183-186.
  • 6KIM K J,YUE Y,ILTIS R A,et al.A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems[J].IEEE Transactions on Wireless Communications,2005,4(2):710-721.
  • 7MIDDLETON D.Non-Gaussian noise models in signal processing for telecommunications:new methods and results for class A and class B noise models[J].IEEE Transactions on Information Theory,1999,45(4):1122-1129.
  • 8WANG X,POOR H V.Joint channel estimation and symbol detection in Rayleigh flat-fading channels with impulsive noise[J].IEEE Communications Letters,1997,1(1):19-21.
  • 9HUBER K,HAYKIN S.Application of particle filter to MIMO wireless communications[A].Proc IEEE ICC'03[C].2003.2311-2315.
  • 10HAYKIN S,HUBER K,CHEN Z.Bayesian sequential state estimation for MIMO communications[A].Proc of the IEEE,2004.439-455.

同被引文献129

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部