期刊文献+

基于DSFCI-tree的分布式数据流频繁闭合模式挖掘 被引量:2

Mining Frequent Closed Patterns over Distributed Data Streams Based on DSFCI-tree
下载PDF
导出
摘要 频繁闭合模式集可惟一确定频繁模式完全集且数据量要小几个数量级。根据分布式数据流的特点,提出了一种挖掘频繁闭合项集的算法,该算法采用K叉树形结构,以叶子节点接收各条数据流,创建DSFCI_tree结构来存贮各条数据流中的每段闭合模式,然后逐层往上合并更新,从而在根节点可得整个分布式数据流的频繁闭合模式。 The set of frequent closed patterns uniquely determines the complete set of all frequent patterns, and it can be orders of magnitude smaller than the latter. According to the features of distributed data streams, a new algorithm is proposed for mining the frequent closed patterns. This algorithm uses K-children tree structure, receives each data stream by the leaf node, founds the DSFCl_tree to store each section of closed patterns in each data stream, then the cascade merges upward and renews, thus may result in the root node the frequent closed pattern in the entire distributional data streams. The experiments and analysis show that the algorithm has good performance.
出处 《微电子学与计算机》 CSCD 北大核心 2007年第9期120-122,125,共4页 Microelectronics & Computer
基金 安徽省高等学校自然科学研究项目(KJ2007B236)
关键词 数据挖掘 分布式数据流 关联规则 频繁闭合项集 data mining distributed data streams association rule frequent closed itemsets
  • 相关文献

参考文献5

  • 1Giannella C,Han J,Pei J,et al.Mining frequent patterns in data streams at multiple time granularities[A].Next Generation Data Mining[C].Cambridge,Mass:MIT Press,2003
  • 2Arasu A,Manku G S.Approximate counts and quantiles over sliding windows[A].In:Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems[C].Paris,France:ACM Press,2004
  • 3Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[A].Proc of the 17th Int'l Conf on Database Theory[C].Berlin:Springer-Verlag,1999
  • 4M J Zaki,C J Hsiao,CHARM:An efficient algorithm for closed itemset mining[A].Proc of the 2nd SIAM Int'l Conf on Data Mining[C].Arlington:SIAM,2002
  • 5刘君强,孙晓莹,庄越挺,潘云鹤.挖掘闭合模式的高性能算法[J].软件学报,2004,15(1):94-102. 被引量:19

二级参考文献8

  • 1[1]Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules. In: Beeri C, et al, eds. Proc. of the 7th Int'l. Conf. on Database Theory. Jerusalem: Springer-Verlag, 1999. 398~416.
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Beeri C, et al, eds. Proc. of the 20th Int'l. Conf. on Very Large Databases. Santiago: Morgan Kaufmann Publishers, 1994. 487~499.
  • 3[3]Pei J, Han J, Mao R. CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Gunopulos D, et al, eds. Proc. of the 2000 ACM SIGMOD Int'l. Workshop on Data Mining and Knowledge Discovery. Dallas: ACM Press, 2000. 21~30.
  • 4[4]Burdick D, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Georgakopoulos D, et al, eds. Proc. of the 17th Int'l. Conf. on Data Engineering. Heidelberg: IEEE Press, 2001. 443~452.
  • 5[5]Zaki MJ, Hsiao CJ. CHARM: An efficient algorithm for closed itemset mining. In: Grossman R, et al, eds. Proc. of the 2nd SIAM Int'l. Conf. on Data Mining. Arlington: SIAM, 2002. 12~28.
  • 6[6]Liu JQ, Pan YH, Wang K, Han J. Mining frequent item sets by opportunistic projection. In: Hand D, et al, eds. Proc. of the 8th ACM SIGKDD Int'l. Conf. on Knowledge Discovery and Data Mining. Alberta: ACM Press, 2002. 229~238.
  • 7[7]Srikant R. Quest synthetic data generation code. San Jose: IBM Almaden Research Center, 1994. http://www.almaden.ibm.com/ software/quest/Resources/index.shtml
  • 8[8]Blake C, Merz C. UCI Repository of machine learning. Irvine: University of California, Department of Information and Computer Science, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html

共引文献18

同被引文献32

  • 1侯东风,杨强,邓苏.一种基于多时间粒度的数据流建模方法[J].计算机工程与科学,2006,28(2):111-114. 被引量:2
  • 2潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 3战立强,刘大昕.基于概念格的频繁闭项集增量挖掘算法研究[J].哈尔滨工程大学学报,2007,28(2):194-197. 被引量:2
  • 4宋旭东,翟坤,刘晓冰.基于图论的频繁闭项集挖掘[J].微电子学与计算机,2007,24(8):28-30. 被引量:1
  • 5Han J W,et al.Frequent pattern mining:Current status and future directions[J].Data Mining and Knowledge Discovery,2007,15(1):55-86.
  • 6Cheng J,et al.A survey on algorithms for mining frequent itemsets over data streams[J].Knowledge and Information Systems,2008,16(1):1-27.
  • 7Agrawal R,et al.Fast algorithms for minging association rules[A].Proceedings of the 20th International Conference on Very Large Data Bases[C].San Francisco:Morgan Kaufmann Publisher,1994.
  • 8Han J,et al.Mining frequent patterns without candidate generation[A].Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data[C].Dallas:ACM,2000.
  • 9Pasquier N,et al.Discovering frequent closed itemsets for association rules[A].In Proceeding of the 7th International Conference on Database Theory[C].Israel:Springer,1999.
  • 10Pei J,et al.CLOSET:An efficient algorithm for mining frequent dosed item sets[A].Proceedings of ACMSIGMOD Workshop On Research Issues in Data Mining and Knowledge Discovery[C].Dallas:ACM,2001.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部