期刊文献+

挖掘最大频繁项集的并行化策略 被引量:3

Parallel Strategy for Mining Maximal Frequent Itemsets
下载PDF
导出
摘要 提出基于因子项集的并行化策略GP以发挥串行算法的剪枝功效。其基本思想是利用因子项集的完全包含关系在处理机之间贪心分配等价类,根据等价类的需要相应地划分和复制数据库记录,使各处理机得以异步计算,达到较好的负载平衡、较高的剪枝效率和较少的数据库记录复制,缩短算法的执行时间。分析和实验表明,基于GP策略的并行算法有较好的可扩展性,其性能优于已有同类算法。 Mining frequent itemsets is a crucial issue in data mining applications. The complexity of the problem has been shown as NP-hard. Parallel techniques are widely used to improve the efficiency of mining algorithms. A novel parallel strategy for mining maximal frequent itemsets, called GP, is proposed in this paper. The basic idea is to increase the pruning efficiency by distributing work greedily among the processors with gene itemsets' complete inclusive relation and selectively duplicates databases on demand of equivalence class for the records in such a way that each processor can compute the frequent itemsets independently. These techniques eliminate the need for synchronization, drastically cutting down the I/O overhead. The analysis and experimental results demonstrate the superb efficiency of the approach in comparison with the previous work.
作者 王卉 屈强
出处 《微电子学与计算机》 CSCD 北大核心 2007年第9期123-125,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(60603069)
关键词 最大频繁项集 并行化策略 数据挖掘 maximal frequent itemsets parallel strategy data mining
  • 相关文献

参考文献6

  • 1Doug Burdick,Manuel Calimlim,Johannes Gehrke.MAFIA:a maximal frequent itemset algorithm for Transactional Databases[C].In:Proceedings of 17th International Conference on Data Engineering,Heidelberg,Germany,2001:443-452
  • 2Karam Gouda,Mohammed Javeed Zaki.Efficiently mining maximal frequent itemsets[C].In:Proceedings of 2001IEEE International Conference on Data Mining (ICDM'01),San Jose,California,2001:163-170
  • 3Wang Hui,Qinghua Li,Chuanxiang Ma,et al.A maximal frequent Itemset algorithm[C].Lecture Notes in Computer Scienee.2003,2639:484-490
  • 4Rakesh Agrawal,John C Shafe.Parallel mining of association rules[J].IEEE Transaction on knowledge and data engineering,1996,8(6):962-969
  • 5Mohammed Javeed Zaki,Srinivasan Parthasarathy,Mitsunori Ogihara,et al.New parallel algorithms for fast discovery of association rues[J].Data Mining and Knowledge Discovery:An International Journal,special issue on Scalable High-Performance Computing for KDD,December 1997,1(4):343-373
  • 6Mohammed Javeed Zaki,Parallel and distributed association mining:a surve[J].IEEE Coneurrency,1999,7(4):14-25

同被引文献34

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部