期刊文献+

气体动力学等熵流2个疏散波的相互作用 被引量:1

Interaction between two rarefaction waves for gas dynamic isentropic equatins
原文传递
导出
摘要 考虑气体动力学中等熵流前向中心疏散波与后向中心疏散波的相互作用问题.借助特征分析法,对在相互作用区域上形成的Goursat问题,首先证明了当其特征边值不出现真空状态时,在相互作用的任何区域内也不会出现真空;同时证明了该问题存在唯一的光滑解.进而获得两疏散波相互作用的结果为相互穿透或在穿透过程中出现真空. The interaction between forward and backward centred rarefaction waves for gas dynamic isentropic system is onsidered. For the Goursat problem developed in the domain of the interaction, with the help of characteristic analysis, it is proved that there will never appear vacuum in the field of interaction when there is no vacuum on the characteristic boundary. Meanwhile, the existence and uniqueness of the smooth solution is obtained. Further, the result of interaction for two rarefaction waves is presented, that is they penetrate each other or the vacuum appears in the process of the penetration.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期443-448,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10461010)
关键词 气体动力学等熵流 疏散波 GOURSAT问题 一致先验估计 真空 Gas dynamic isentropic equations rarefaction wave Goursat problem uniform a priori estimate vacuum
  • 相关文献

参考文献8

  • 1CHANG Tong,HSIAO Ling.The Riemann problem and interaction of waves in gas dynamics[M].Pitman Monographs and Surveys in Pure and Applied Mathematics 41.New York:Longman Scientific & Technical,1989.
  • 2LI Ta-tisen.Global classical solution for quasilinear hyperbolic systems[M].Research in Applied Mathematics,New York:John Wiley & Sons,1994.
  • 3李大潜 赵彦淳.一维等熵流气体动力学组的真空问题.数学季刊,1986,1(1):41-46.
  • 4林龙威.论均熵流气体动力学方程组的真空状态.华侨大学学报:自然科学版,1984,5(2):1-4.
  • 5LIU Tai-ping,SMOLLER J.On the Vacuum state for isentropic gas dynamics equations[J].Advances in Math,1980,1:345-359.
  • 6孙文华,杨汉春.一类偶合双曲守恒律系统的柯西问题(英文)[J].云南大学学报(自然科学版),2004,26(1):6-10. 被引量:3
  • 7SMOLLER J.Shock waves and reaction-diffusion equations[M].2nd Edition.Bolin:Springer-Verlag,1994.
  • 8LI Ta-tisen,YU Wen-ci.Boundary value problem for quasilinear hyperbolic systems[M].Durham:Duke University Mathematics Series V,1985.

二级参考文献4

  • 1[1]YANG Han-chun. Riemann problems for a class of coupled hyperbolic systems of conservation laws[J]. J Differential Equations, 1999, 159: 447-484.
  • 2[2]TAN De-chun, ZHANG Tong. Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ): four Jcases[J]. J Differential Equations, 1994, 111:203-254.
  • 3[3]LI Jie-quan, YANG Shu-li, ZHANG Tong. The two-dimensional Riemann problem in gas dynamics[M]. Harlow UK: Longman Scientific & Technical, 2000.
  • 4[4]CHEN Shao-zhou, LI Jie-quan, ZHANG Tong. Explicit construction of measure solution for Cauchy problem of transportation equations[J]. Science in China (Ser. A),1997, 29(17) :997-1 008.

共引文献2

同被引文献9

  • 1SEKHAR T R, SHARMA V D. Riemann problem and elementary wave interactions in isentropic magnetogasdynamics [ J ]. Nonlinear Analysis : Real World Applications ,2010,11:619-636.
  • 2DING X X, CHEN G Q, LUO P Z. Convergence of the Lax - Friedrichs scheme for isentropic gas dynamics( Ⅰ ) ( Ⅱ ) [ J ]. Ac- ta Math Sci, 1985,5:415- 432,433- 472.
  • 3CHEN G Q. Convergence of the Lax - Ffiedrichs scheme for isentropic gas dynamics (Ⅲ ) [ J ]. Acta Math Sci, 1986,6:75- 120.
  • 4CHANG T, HSIAO L. The Riemann problem and interaction of waves in gas dynamics [ M ]. Essex:Longman, 1989.
  • 5SMOLLER J. Shock waves and reaction - diffusion equations[ M ]. New York : Springer - Verlag, 1992.
  • 6LIT T. Global classical solutions for quasilinear hyperbolic systems [ M ]. New York:John Wiley & Sons, 1994.
  • 7LAX P D. Hyperbolic systems of conservation laws Ⅱ[ J]. Comm Pure Appl Math, 1957,10:537-566.
  • 8LI T T, YU W C. Boundary value problems for quasilinear hyperbolic systems[ M ]. Durham:Duke Univ Press, 1985.
  • 9LAX P D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations [ J ]. J Math Phys, 1964,5:611-613.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部