期刊文献+

基于混合微粒群算法的智能水下机器人模糊神经网络控制 被引量:3

Fuzzy neural network control of AUV based on HPSO algorithm
原文传递
导出
摘要 为减少因水下机器人模糊神经网络控制器参数较多、手工调整困难及主观不确定性因素的影响,提出一种基于免疫理论和惯性权值非线性递减策略的混合微粒群算法.该算法在保持基本微粒群算法处理多峰和多维问题能力的基础上,根据粒子浓度和适应度来动态调整约束因子,同时结合惯性权值非线性递减策略来抑制算法早熟收敛,平衡全局和局部搜索能力.在与GAI、GA及基本微粒群算法的仿真比较试验中,该算法搜索到最佳近优解,且其收敛速度最快.在水下机器人仿真平台上的控制试验表明,基于混合微粒群算法的控制器性能良好,具有较强的抗海流干扰能力.仿真结果证明了该算法的可行性. To reduce the numerous work and subjective uncertainty in manual adjustments for underwater vehicles, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy was developed. Particle's concentration was introduced into the algorithm from the immune theory, and the restraint factor is dynamically tuned according to particle's concentration and fitness. Owing to the restraint factor and NDIW strategy, HPSO algorithm can effectively prevents premature convergence and keeps balance between global and local searching ability. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. HPSO algorithm has the fastest convergence velocity and finds the best solutions compared with genetic algorithm (GA), immune genetic algorithm(IGA), and basic particle swarm optimization (PSO) algorithm in simulation experiments. The experimental results on the autonomous underwater vehicle(AUV) simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. Simulation results verify the feasibility in application to AUV.
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2007年第3期16-21,共6页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(50579007)
关键词 智能水下机器人 模糊神经网络 微粒群算法 免疫理论 autonomous underwater vehicle (AUV) fuzzy neural network particle swarm optimization (PSO) algorithm immune theory
  • 相关文献

参考文献10

二级参考文献32

  • 1彭良,卢迎春,万磊,孙俊岭.水下智能潜器的神经网络运动控制[J].海洋工程,1995,13(2):38-46. 被引量:17
  • 2于华男,万磊,徐玉如.开架式水下机器人运动的模糊非线性PD控制方法[J].海洋工程,2004,22(3):65-68. 被引量:10
  • 3李晔,刘建成,沈明学.Dynamics model of underwater robot motion control in 6 degrees of freedom[J].Journal of Harbin Institute of Technology(New Series),2005,12(4):456-459. 被引量:17
  • 4[3]ALBUS J,MCCAIN H,LUMIA R.NASA/NBS standard ref erence model for telerobot control system architecture (NASREM)[R].National Bureau of Standards,NBS Technical Note1235,1987.
  • 5[4]BROOKS R.A robust layered control system for a mobile robot[J].IEEE Journal of Robotics and Automation,1986,RA-2(1):14-23.
  • 6[10]ROECKEL W M,RIVOIR R H.Simulation environments for the design and test of an intelligent controller for autonomous underwater vehicles[A].Proceedings of the 1999 Winter Simulation Conference[C].Phoenix:USA,1999.
  • 7[11]DONALD P B.A virtual world for an autonomous underwater vehicles[D].Monterey:Naval Postgraduate School,1994.
  • 8[16]EDIN O,GEOFF R.Thruster fault diagnosis and accommodation for open-frame underwater vehicles[J].Control Engineering Practice,2004(12):1575-1598.
  • 9HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 10DE CASTRO LN. Immune and Neural Network Models: Theoretical and Empirical Comparisons[J]. International Jnurn'al of Computational Intelligence and Applications, 2001, 1(3).

共引文献444

同被引文献32

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部