期刊文献+

轴对称可压缩流的统一坐标系 被引量:2

Unified Coordinate System for Axisymmetric Compressible Flow
下载PDF
导出
摘要 将Hui等人提出的统一坐标系推广到轴对称欧拉方程,讨论统一坐标系下的轴对称欧拉方程的解法,并通过数值算例证明轴对称统一坐标系的优越性.  We extend the unified coordinate system proposed by Hui et al.to axisymmetric Euler equations.The form and hyperbolicity of axisymmetric Euler equations are discussed.Solution of 1-D Riemann problem solved by axisymmetric Euler equations after dimensional splitting is shown.Axisymmetric Euler equations are numerically solved using Godunov scheme with MUSCL update.Numerical results show advantages of unified coordinates.
作者 高波 吴子牛
出处 《计算物理》 CSCD 北大核心 2007年第5期519-525,共7页 Chinese Journal of Computational Physics
基金 国防科技重点实验室基金(51479010704JW0105)资助项目
关键词 统一坐标系统 轴对称流动 可压缩流 unified coordinate system axisymmetric flow compressible flow
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Wagner D H. Equivalence of Euler and Lagrangian equations of gas dynamics for weak solutions [J]. Journal of Differential Equations,1987,68:118- 136.
  • 2[2]Hui W H, Li W P, Li Z W. A unified coordinate system for solving the two-dimensional Euler equations [J]. J Comput Phys, 1999,153: 596 - 637.
  • 3[3]Wu Z N. A note on the unified coordinate system for computing shock waves [J]. J Comput Phys, 2002,180:110- 119.
  • 4[4]Wu Z N, Shi J. Corrdinate transformation for CFD [A]. Proceedings of the 2nd Iht Conf CFD, Sidney, July,2002.
  • 5[5]Serre, D. Systems of conservation laws [ M ]. Vol I, Cambridge University Press, 1999.
  • 6[6]MacCormack R W. The effect of viscosity in hypervelocity impact cratering [ R]. AIAA Paper, 1969,69:354.
  • 7[7]Godunov S K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics [ J ]. Mat Sb,1959,47:271 - 306.

共引文献3

同被引文献16

  • 1梁德旺,王可.AUSM+格式的改进[J].空气动力学学报,2004,22(4):404-409. 被引量:26
  • 2陈矛章.粘性流体力学基础[M].北京:高等教育出版社,1993.
  • 3Karki K C, Patankar S V. Pressure based calculation proce- dure for viscous flows at all speeds in arbitrary configurations [J]. AIAA, 1989, 27(7):1167-1174.
  • 4Moukalled F, Darwish M. A high resolution pressure-based algorithm for flow at all speeds[J]. Journal of Computational Physics, 2001, 168(1) : 101-133.
  • 5陶文铨.计算传热学的近代进展[M].北京:科学出版社,1993:209-224.
  • 6Eidelman S, Colella P, Shreeve R P. Application of the godunov method and its second-order extension to cascade flow modeling[J]. AIAA, 1984, 22(11):1609 -1615.
  • 7Moukalled F,Darwish M.A high-resolution pressure-based algorithm for fluid flow at all speeds[J].Journal of Computa-tional Physics,2001,168(1):101-133.
  • 8Karki K C,Patankar S V.Pressure based calculation proce-dure for viscous flows at all speeds in arbitrary configurations [J].AIAA Journal,1989,27(9):1167-1174.
  • 9Rhie C M,Chow W L.Numerical study of the turbulent flow past an isolate airfoil with trailing edge separation[J].AIAA Journal,1982,21(11):1525-1532.
  • 10Liou M S,Steffen C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107(1):23-29.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部