期刊文献+

具有阶段结构的非局部时滞扩散模型的波前解 被引量:2

Traveling Wave Solutions in a Nonlocal Diffusive-Delayed Model with Staged Structures
下载PDF
导出
摘要 研究了一个弱耦合的非局部时滞扩散人口模型.通过将Wu和Zou[3]中的方法进行推广,建立了该模型中描述成年个体方程波前解的存在性.进一步证明了一定条件下该模型行波解的存在性.其结果推广并改进了一些已有的结论. A partially coupled model of non-local delayed-diffusive population was considered. The existence of traveling wave solutions of the mature equation was established by extending the method of Wu and Zou. Moveover, we proved that under certain the conditions the traveling wave solutions of the model were existent. Some known results have been generalized and improved.
出处 《甘肃科学学报》 2007年第3期19-22,共4页 Journal of Gansu Sciences
关键词 时滞 波前解 非局部效应 阶段结构 time-delay traveling wave solutions non-local effect staged structure
  • 相关文献

参考文献8

  • 1Aiello A G,Freedman H I.A Time-delay Model of Species Growth with Stages Atructure[J].Math Biosci,1990,101:139-153.
  • 2Al-Omari J,Gourley S A.Montone Traveling Fronts in an Age-structured Reaction-diffusion Model of a Single Species[J].J Math Biol,2002,45:294-312.
  • 3Al-Omari J,Gourley S A.Monotone Wave-fronts in a Stuctured Population Model with Distributed Maturation Delay[J].IMA J Appl Math,2005,1-22.
  • 4Deners D,Medina K.Abatract Evolution Equation,Periodic Problems and Applicationa[M].Pitman Research Notes in Mathematics,no.279,Harlow,UK:Longman,1992.
  • 5Gourley S A.Wave Front Solution of a Diffusive Delay Model for Population of Daphnia Magna[J].Comput Math Appl,2001,42:1421-1430.
  • 6Gourley S A,Kuang Y.Wave Fronts and Global Stability in a Time-delayed Popuation Modl Stage Structure[J].Proc R Soc Lond,2003,459(A):1563-1579.
  • 7Wu J,Zou X.Traveling Wave Fronts of Reaction Diffusion System with Delay[J].J Dynam Differential Equation,2001,13:651-687.
  • 8罗维刚,刘捷.一类时滞反应扩散方程的渐近行为[J].甘肃科学学报,2007,19(2):32-34. 被引量:3

二级参考文献10

  • 1汪璇.Banach空间积-微分方程整体解的存在性[J].甘肃科学学报,2005,17(4):1-5. 被引量:2
  • 2臧子龙.一类二阶非线性常微分方程解的长时间行为[J].甘肃科学学报,2006,18(2):4-8. 被引量:4
  • 3Wu J.Theory and Applications of Partial Functional Differential Equations[J].New York:Springer-Verlag,1996.
  • 4Li W,Lin G,Ruan S.Existence of Traveling Wave Solutions in Delayed Reaction-diffusion Systems with Applications to Diffusion-competition Systems[J].Nonlinearity,2006,(19):1253-1273.
  • 5Liang X,Zhao X.Asymptotic Speeds of Spread and Traveling Waves for Monotone Semi-flows with Applications[J].Comm Pure Appl Math,2006,(60):1-40.
  • 6Schaaf K W.Asymptotic Behavior and Traveling Wave Solutions for Parabolic Functional Differential Equations[J].Trans Amer Math Soc,1987,(302):587-615.
  • 7Volpert A I,Volpert V A.Traveling Wave Solutions of Parabolic Systems[M].Translations of Mathematical Monographs 140,AMS,Providence,Rhode Island,1994.
  • 8Chen X.Existence,Uniqueness and Asymptotic Stability of Traveling Waves in Non-local Evolution Equation[J].Adv Differential Equat ions,1997,(2):125-160.
  • 9Martin R H,Smith H L.Abstract Functional Differential Equations and Reaction-diffusion Systems[J].Trans Amer Math Soc,1990,(321):1-44.
  • 10Smith H L,Zhao X.Global Asymptotic Stability of Traveling Waves in Delayed Reaction-diffusion Equations[J].SIAM J Math Anal,2000,(31):514-534.

共引文献2

同被引文献12

  • 1臧子龙.一类二阶非线性常微分方程解的长时间行为[J].甘肃科学学报,2006,18(2):4-8. 被引量:4
  • 2Gourley S A, Kuang, Y. Wave fronts and global stability in a time-delayed population model stage structure [J].Proc R Soc Lond, 2003, 459(A): 1563-1579.
  • 3Wu J, Zou X. Traveling wave fronts of reaction diffusion system with delay [J].Dynam Differential Equation, 2001, 13: 651-687.
  • 4Al-Omari J, Gourley S A.Montone traveling wave fronts in an age-structured reaction-diffusion model of a single species [J]. J. Math. Biol.,2002,45 : 294-312.
  • 5Al-Omari J, Gourley S A.Monotone wave-fronts in a structured population model with distributed maturation delay[J]. IMA. J. Appl. Math.,2005,16: 1-22.
  • 6Ye Q X, Li Z Y.Introduction to Reaction Diffusion equations [M].Beijing: Science Press, 1994.
  • 7Al-Omari J,Gourley S A.A non-local reaction-diffusion model for a single species with stage structure and distributed maturation delay[J]. Euro. J. Appl. Math., 2005,16:37-51.
  • 8S. L. Wu and W. T. Li. Stability and traveling wave fronts in Lotka-Volterra cooperation model with stage structure[J]. Acta Math. Sci in chinese,2008, in press.
  • 9Al-Omari J,Gourley S A.A Non-local Reaction-Diffusion Model for a Single Species with Stage Structure and Distributed Maturation Delay[J].Euro J Appl Math,2005,16:37-51.
  • 10Al-Omari J,Gourley S A.Montone Traveling Wave Fronts in an Age-Structured Reaction-Diffusion Model of a Single Species[J].J Math Biol,2002,45:294-312.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部