期刊文献+

一类多元多重向量值小波包的双正交性

The Biorthogonality of Multiple Vaector-valued Multivariate Wavelet Packets
下载PDF
导出
摘要 引进了基于数量矩阵伸缩的紧支撑多元多重向量值双正交小波包的概念.运用泛函分析方法、傅立叶变换与积分变换,讨论了它们的双正交性,得到关于多元多重向量值小波包的双正交公式. The notion of a class of compactly supported biorthogonal multiple vaector-valued multivariate wavelet packets, which are associated with a quantity dilation matrix, is introduced. The biorthogonality properties of the multiple vaector-valued wavelet packets in higher dimensions are investigated by virtue of functional analysis methods and Fourier transform, and biorthogonality formulae regarding these wavelet packets are obtained.
作者 李华 贺学海
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2007年第5期444-447,共4页 Journal of Henan University:Natural Science
基金 河南自然科学基金资助项目(0511013500)
关键词 多元 双正交 多重向量值多分辨分析 多重向量值尺度函数 多重向量值小波包 multivariate biorthogonal, multiple vaector- valued multiresolution analysis multiple vaector- valued scaling function multiple vaector-valued wavelet packets
  • 相关文献

参考文献6

  • 1ZHANG Ning,WU Xiao lin.Lossless Compression of Color Mosaic Images[J].LEEE Trans Image Proce ssing,2006,15(16):1379-1388.
  • 2BACCHELLI S,et al.Wavelets for multichannel signals[J].Adv Appl Math,2002,29(3):581-598.
  • 3CHEN Qingjiang,CHENG Zhengxing,et al.Existence and construction of compactly supported biorthogonal multiple vector-valued wavelets[J].Journal of Applied Mathematics and Computting,2006,22(3):101-115.
  • 4CHUI C K,LI C.Nonorthonormal wavelet packets[J].SIAM Math Anal,1993,24(3):712-738.
  • 5陈清江,张同琦,程正兴,李学志.一类多重向量值双正交小波包的刻划[J].云南大学学报(自然科学版),2006,28(6):472-477. 被引量:7
  • 6陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21

二级参考文献17

  • 1陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 2ChuiCK.小波分析导论[M].西安:西安交通大学出版社,1994..
  • 3Toliyat H A,Abbaszadeh K,Rahimian M M, Olson L E. Rail defect diagnosis using wavelet packet decomposition[J]. IEEE Transactions on Industry Applications, ,2003,39(5) :1451-1461.
  • 4Martin M B,Bell A E. New image compression technique using multiwavelet packets[J]. IEEE Transactions on Image Processing,2001,10(4):500-511.
  • 5Coifman R R, Meyer Y, Wickerhauser M V. Wavelet analysis and signal processing[A]. Beylkin G. Wavelets and their Applications[C]. Boston:Jones and Barlett, MA, 1992.
  • 6Chui C K,Chun L. Nonorthonormal wavelet packets[J] SIAM Math. Anal. , 1993,24(3) :712-738.
  • 7Cohen A, Daubeches I. On the instability of arbitrary biorthogonalwavelet packets[J]. SIAM. Math. Anal. , 1993,24(5) : 1340- 1354.
  • 8Shen Z. Nontensor product wavelet packets in L2 (R') [J]. SIAM. Math. Anal. , 1995,26 (4) :1061 - 1074.
  • 9CHUICK.小波分析导论[M].程正兴译.西安:西安交通大学出版社,1994.
  • 10TOLIYAT H A, ABBASZADEH K, RAHIMIAN M M, et al. Rail defect diagnosis using wavelet packet decomposition[J].IEEE Trans Industry Applications, 2003, 39(5): 1 454-1 461.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部