期刊文献+

逆C均值学习样本筛选方法 被引量:1

An Inverse C-mean Method for Filtering the learning Samples
下载PDF
导出
摘要 在有监督分类中,歧义学习样本将导致学习时间增长,分类性能下降等问题。本文提出一种逆C均值样本筛选方法,可有效剔出歧义的训练样本。该方法采用类似C均值聚类分析逆过程的方法,将有歧义的学习样本从训练集中剔除。本文以有监督图像分割中的样本选择为例进行实验。实验表明,该方法可有效消除由人机交互引入的歧义样本。 The error samples may lead to long time and low performance in the classification using the supervised learning. In this paper, an Inverse C-Mean method was proposed to filter the error samples. The proposed method is like the inverse procedure of C mean cluster. Experiments illustrated that the mentioned method was valid to filter the error sample in the learning samples.
出处 《微计算机信息》 北大核心 2007年第27期209-210,共2页 Control & Automation
基金 国家自然科学基金(60274026 60373089) 教育部中国教育科研网格计划ChinaGrid图像处理网格应用平台建设专题项目(CG2003-GA00102)
关键词 有监督学习 样本筛选 逆C均值 Supervised learning, sample filtration, Inverse C-mean
  • 相关文献

参考文献2

二级参考文献14

共引文献85

同被引文献13

  • 1刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 2张莉,郭军.基于边界样本的训练样本选择方法[J].北京邮电大学学报,2006,29(4):77-80. 被引量:15
  • 3Lindenbaum M, Markovitch S, Rusakov D. Selective sampling for nearest neighbor classifiers[J]. Machine Learning, 2004, 54(2): 125-152.
  • 4Mitra P, Murthy C A, Pal S K. Density-based multiscale data condensation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 734-747.
  • 5Friedman M, Last M, Makover Y, et al. Anomaly detection in Web documents using crisp and fuzzy-based cosine clustering methodology[J]. Information Sciences, 2007, 177(2): 467-475.
  • 6DONG Yong-gui, SUN Zhao-yan, JIA Hui-bo. A cosine similarity-based negative selection algorithm for time series novelty detection[J]. Mechanical Systems and Signal Processing, 2006, 20(6): 1461-72.
  • 7Arnia K lizuka I, Fujiyoshi M, et al. DCT sign-based similarity measure -br JPEG image retrieval[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A(9): 1976-1985.
  • 8Mcmahon E M, Korinek J, Yoshifuku S, et al. Classification of acute myocardial ischemia by artificial neural network using echocardiographic strain waveforms[J]. Computers in Biology and Medicine, 2008, 38(4): 416-424.
  • 9Swift D K, Dagli C H. A study on the network traffic of connexion by boeing: Modeling with artificial neural networks[J]. Engineering Applications of Artificial Intelligence,2008,21(8):1113-1129.
  • 10陈先来,肖晓旦,杨荣,刘建平.基于误差反向传播神经网络的胃癌细胞识别研究[J].中国循证医学杂志,2007,7(9):637-640. 被引量:2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部