期刊文献+

无指导聚类在信用卡促销中的应用 被引量:1

Unsupervised Clustering and Its Application in Credit Card Promotion
下载PDF
导出
摘要 当前,数据挖掘技术已经应用到社会的各个领域,包括电信业、金融业、医疗卫生、自然科学等。本文介绍了数据挖掘的两种主要策略:有指导的学习和无指导的聚类。并通过信用卡促销数据集来解释无指导聚类的过程,挖掘结果对于信用卡促销活动具有很大的指导意义。 At present, data mining techniques are applied to all spheres of society, including telecommunications, financial services, health care, natural sciences. This paper presents what is data mining and the two major strategies of data mlning:supervised leaming and unsupervised clustering. Through credit card data sets this paper explains the process of unsupervised clustering and mining result is a great guide for the promotional activities of the credit card.
出处 《计算机与现代化》 2007年第9期100-102,共3页 Computer and Modernization
关键词 数据挖掘 无指导聚类 信用卡促销 data mining unsupervised clustering credit card promotion
  • 相关文献

参考文献5

  • 1JiaweiHan MichelineKamber著 范明 译.数据挖掘概念与技术[M].机械工业出版社,2004..
  • 2David Hand,Heikki Mannila,Padhraic Smyth.数据挖掘原理[M].张银奎,廖丽,宋俊译.北京:机械工业出版社,2006.
  • 3Lawrence R D, Almasi G S, Kotlyar V, et al. Personalization of supermarket product recommendations [ J ]. Special Issue of the International Journal Data Mining and Knowledge Discovery, 2001(5) :11-32.
  • 4Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendation algorithms for E-commerce [ C]//ACM Conference on Electronic Commerce, 2000.
  • 5Srikant R. Mining generalized association rules [ C ]// Proc. of VLDB,Zurich, Switzerland, 1995 : 407-419.

共引文献15

同被引文献13

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2ViktorMS,KennethC.大数据时代[M].盛扬燕,周涛译.杭州:浙江人民出版社,2012.
  • 3Rudi L Cilibrasi, Paul M B Vitanyi. A fast quartet tree heuristic for hierarchical clustering [ J ]. Pattern Recogni- tion, 2011,44(3) :662-677.
  • 4Su M C, Chou C H. A modified version of the k-means al- gorithm with a distance based on cluster symmetry [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2001,23(6) :674-680.
  • 5Elkan C. Using the triangle inequality to accelerate k- means [ C ]/! Proceedings of the 20th International Confer- ence on Machine Learning. 2003:147-153.
  • 6Huang G B, Ding X, Zhou H. Optimization method based extreme learning machine for classification [ J ]. Neuroeom- puting, 2010,74 ( 1-3 ) : 155-163.
  • 7UCI Machine Learning Repository. Welcome to the UC Ir- vine Machine Learning Repository! [ DB/OL]. http://ar- chive, ics. uci. edu/ml/, 2013-07-01.
  • 8刘宏兵,周文勇,郭振.基于模糊关系传递闭包的聚类方法[J].信阳师范学院学报(自然科学版),2008,21(1):144-146. 被引量:3
  • 9宋浩远.基于模型的聚类方法研究[J].重庆科技学院学报(自然科学版),2008,10(3):71-73. 被引量:13
  • 10杨宁,唐常杰,王悦,陈瑜,郑皎凌.基于谱聚类的多数据流演化事件挖掘[J].软件学报,2010,21(10):2395-2409. 被引量:6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部