期刊文献+

改进PCA及其在真空自耗炉故障诊断中的应用 被引量:1

Application of Improved PCA to Fault Diagnosis for Vacuum Consumable Electric-Arc Furnace
下载PDF
导出
摘要 针对过程变量呈均值阶段性变化的一类生产过程,提出了一种新的主成分分析(PCA)故障诊断方法.该方法通过高通滤波对过程变量进行状态变换,扩展系统,然后采用主成分分析方法对扩展系统进行统计建模,并基于该模型进行过程监测和故障诊断.该方法可以克服普通主成分分析不能消除均值变化对所建模型的负面影响,进而提高故障诊断的鲁棒性和灵敏性.将提出的方法在真空自耗电弧炉中进行应用研究,冷却水泄漏故障诊断结果表明,提出的方法是有效的. For some processes in which the mean values of process variables vary in different phases, a new fault diagnosis approach based on improved principal component analysis (P CA) was proposed. The state of process variables are transformed by a high-pass filter for system extension, then PCA is applied to the output of the extended system to develop a statistical model, by which the process monitoring and fault diagnosis are both available. This method can eliminate the negative effect of mean value change on the conventional PCA model and improve further the robustness and sensitivity of fault diagnosis. The method was applied to diagnosing the fault of cooling water leakage of the system of vacuum consumable electric-arc(VCEA) furnace, and the simulation results showed that the proposed method is effective.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期1221-1224,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60374003 60674063)
关键词 故障诊断 主成分分析 高通滤波 真空自耗电弧炉 扩展系统 fault diagnosis PCA high-pass filter VCEA furnace system extension
  • 相关文献

参考文献12

  • 1Frank P M.Fault diagnosis in dynamic systems using analytical and knowledge based redundancy-a survey and some new results[J].Automatica,1990,26(3):459-474.
  • 2John F M.Using on-line process data to improve quality:challenges for statisticians[J].International Statistical Review,1997,65(3):309-323.
  • 3邹伟,高颀,陈战乾,郭廷中,刘会英.VAR炉熔炼过程中磁场作用的分析[J].钛工业进展,2003,20(4):59-62. 被引量:6
  • 4张晶宇,范丽娟,张一鹏,康宁.影响真空自耗电极电弧炉电弧稳定性的因素及对策[J].真空,2003,40(3):21-24. 被引量:9
  • 5Dunteman G H.Principal component analysis[M].London:SAGE Publication LTD,1989:1-100.
  • 6Lin W L,Qian Y,Li X X.Nonlinear dynamic principal component analysis for online process monitoring and diagnosis[J].Computers and Chemical Engineering,2000,24(3):423-429.
  • 7Sang W C,Chang K Y,Lee I B.Overall statistical monitoring of static and dynamic patterns[J].Ind Eng Chem Res,2003,42(1):108-117.
  • 8冯雄峰,阳宪惠,徐用懋.多元统计过程控制方法的平方预测误差分析[J].清华大学学报(自然科学版),1999,39(7):41-45. 被引量:25
  • 9Evan L R,Lieo H,Ri D.Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J].Chemometrica and Intelligent Laboratory Systems,2000,51:81-93.
  • 10Zhao L J,Chai T Y,Wang G.A nonlinear modeling and online monitoring method for the batch process using multiple local PCA[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics.Xi'an,2003:1190-1194.

二级参考文献14

  • 1冯雄峰 阳宪惠 等.基于多元统计过程控制方法的工业过程监控[J].浙江大学学报,1998,32:28-37.
  • 2李增儒.熔钛真空白耗电弧炉与壳式炉真空系统设计中的几问题[J].稀有金属材料与工程,1984,(5).
  • 3张继玉.真空电炉[M].沈阳:东北大学出版社,2002..
  • 4马文蔚 等.普通物理[M].北京:高等教育出版社,1981.101.
  • 5Davidson P A, He X, Lowe A J. Flow Transitions in Vacuum Arc Remelting[J]. Material Science and Technology,2000, 16:699.
  • 6Schlatter R. Journal of Vacuum Science and Technology[l],1974, 11 (6) : 1 074.
  • 7冯雄峰,浙江大学学报,1998年,32卷,增刊,28页
  • 8Dunia R,Computer Chemistry Engineering,1996年,2卷,Suppl期,S713页
  • 9Zhang J,Trans I Chem E,1996年,74卷,PartA期,89页
  • 10孙文爽,多元统计分析 ,1994年

共引文献57

同被引文献8

  • 1Xiao Z T, Yang J R, Liu Q. Image matching system design and implementation [C ] // Proceedings of the Fourth International Conference on Cybernetics. New York: IEEE Machine Learning and 2005 : 18 - 21.
  • 2Nagashima S, Aoki T, Higuchi T, et al. A subpixel image matching technique using phase-only correlation [ C ] // ISPACS. Tottori: IEEE, 2006 : 701 - 704.
  • 3Olson C F. Maximum-likelihood image matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(6) :853 857.
  • 4Tan M H, Hammond J K. A non-parametric approach for linear system identification using principal component analysis [J]. Mechanical Systems and Signal Processing, 2007, 21 (4) : 1576 - 1600.
  • 5Sun W X, Chen J, Li J Q. Decision tree and PCA-based fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2007,21 (3) : 1300 - 1317.
  • 6Perry M A, Wynn H, P. Principal components analysis in sensitivity studies of dynamic systems [J ]. Probabilistic Engineering Mechanics, 2006,21(4) : 454 - 460.
  • 7Shanmugarn R, Johnson C. At a crossroad of data envelopment and principal component analyses[ J ]. Omaga, 2007,35(4) :351 - 364.
  • 8张金萍,刘杰,李允公.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报,2007,31(4):444-448. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部