期刊文献+

M-J混沌分形图谱中Misiurewicz点的分布规律 被引量:2

On the Distribution of Misiurewicz Points in M-J Chaos-Fractal Spectrum
下载PDF
导出
摘要 利用计算机数学试验的方法研究了M-J混沌分形图谱中的准周期点——Misiurewicz点的性质及分布规律,得到了Misiurewicz点和M集周期芽孢的拓扑分布关系,给出Misiurewicz点和M集周期芽孢之间的递推公式,为进一步揭示M集的图像内部结构特征以及其内部的周期点、准周期点的性质提供了一个有益的探讨. Using the method of computer mathematic experiments, the nature of Misiurewicz points as the preperiodic points in M-J chaos-fractal spectrum and their distribution are studied. The topological relationship between the distribution of Misiurewicz points and that of M-set periodic-buds is thus given, with a recursion formula between them derived. As a result, a useful discussion is made on revealing further the internal structure of M- set images and the properties of its periodic and perperiodic points.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期1262-1265,共4页 Journal of Northeastern University(Natural Science)
基金 教育部博士学科点专项科研基金资助项目(2003145030)
关键词 混沌分形 Misiurewicz点 周期芽孢 拓扑分布 chaos-fractal Misiurewicz point periodic-buds topological relationship
  • 相关文献

参考文献9

二级参考文献23

  • 1Mandelbrot B. B.. The Fractal Geometry of Nature. San Fransisco:Freeman W. H. , 1982, 1~10
  • 2Rojas Raul. A tutorial on efficient computer graphic representation of the Mandelbrot set. Computer & Graphics, 1991, 15(1): 91~100
  • 3Chen N. , Zhu W. Y.. Bud sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c (w=α+iβ). Computers & Graphics, 1998, 22(4): 537~546
  • 4Hao B. L.. Starting with Parabolas An Introduction to Chaotic Dynamics. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1993(in Chinese)(郝柏林.从抛物线谈起--混沌动力学引论.上海:上海科技教育出版社,1993)
  • 5Yan D. J. , Liu X. D. , Zhu W. Y.. An investigation of Mandelbrot set and julia sets generated from a general complex cubic iteration. Fractal,1999, 7(4): 433~437
  • 6LiuX. D., HeX. Q., ZhuW. Y.. The bounds and thedimensions of the general M and J sets. Fractals, 2000, 8(2): 215-218
  • 7Feigenbaum M. J.. Quantitative universality for a class of nonlinear transformations. Journal of Statistic Physics, 1978, 19(6): 25~52
  • 8Peitgen H. O. , Richter P. H.. The Beauty of Fractals-Images of C omplex Dynamical Systern. Berlin: Springer-Verlag, 1988
  • 9Mandelbrot B B. The Fractal Geometry of Nature. San Fransisco: Freeman W H,1982
  • 10Rojas Raul. A tutorial on efficient computer graphic representation of the Mandelbrot set. Computers & Graphics,1991,15(1):91~100

共引文献20

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部