摘要
保持隐私是未来数据挖掘领域的焦点问题之一,如何在不共享精确数据的条件下,获取准确的数据关系是保持隐私的数据挖掘的首要任务。本文利用向量点积方法从垂直型分布数据中挖掘关联规则,并且保持其隐私性。给出了数量积算法和隐私挖掘的步骤,最后举例说明了如何利用数量积算法进行垂直型分布式数据挖掘。
There has been growing interests in private concerns for future data mining research. Privacy preserving data mining concentrates on developing accurate models without sharing precise individual data records. A privacy preserving association rule mining algorithm was introduced. This algorithm preserved privacy of individual values by computing scalar product, meanwhile the algorithm of computing scalar product was given and the security was analyzed.
出处
《河北省科学院学报》
CAS
2007年第3期20-23,共4页
Journal of The Hebei Academy of Sciences
关键词
保持隐私
分布式数据挖掘
关联规则
频繁项集
点积
Privacy preserving
Distributed data mining
Association rules
Frequent itemsets
Dot product