期刊文献+

分布式环境下保持隐私的关联规则挖掘

Privacy preserving distributed data mining association rules of frequent itemsets
下载PDF
导出
摘要 保持隐私是未来数据挖掘领域的焦点问题之一,如何在不共享精确数据的条件下,获取准确的数据关系是保持隐私的数据挖掘的首要任务。本文利用向量点积方法从垂直型分布数据中挖掘关联规则,并且保持其隐私性。给出了数量积算法和隐私挖掘的步骤,最后举例说明了如何利用数量积算法进行垂直型分布式数据挖掘。 There has been growing interests in private concerns for future data mining research. Privacy preserving data mining concentrates on developing accurate models without sharing precise individual data records. A privacy preserving association rule mining algorithm was introduced. This algorithm preserved privacy of individual values by computing scalar product, meanwhile the algorithm of computing scalar product was given and the security was analyzed.
出处 《河北省科学院学报》 CAS 2007年第3期20-23,共4页 Journal of The Hebei Academy of Sciences
关键词 保持隐私 分布式数据挖掘 关联规则 频繁项集 点积 Privacy preserving Distributed data mining Association rules Frequent itemsets Dot product
  • 相关文献

参考文献3

  • 1AGRAWALD,AGGARWALCC.On the design and quantification of privacy preserving data mining algorithms[A].Proceedings of the20th Symposium on principles of Database Systems[C].Santa Barbara.California,USA,2001.
  • 2KANTARCIOGLU M.CLI/TON C.Privacy-preserving distfibuted mining of association rules on horizontally partitioned data[A].The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery(DMKD’02)[C],2002,24-31.
  • 3AGRAWAL R,SRIKANT R.Privacy preserving data mining[A].ACM SIGMOD Conference on Management of Data[C].Dallas,Texas.2000,439-450.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部