期刊文献+

识别强化的双因子免疫控制器及其特性分析 被引量:5

A recognition-intensified two-cell controller and its characteristic analysis
下载PDF
导出
摘要 目前完全从生物免疫机理出发构造的免疫控制器都属于自适应变结构比例型控制器,这类控制器不能无偏差地跟踪恒定输入.本文基于一种描述生物免疫功能的双因子免疫非线性反馈模型,结合控制系统的特点,构造出一个识别强化的双因子免疫控制器模型,给出了它的结构形式.对这种识别强化的双因子免疫控制器的一阶跟踪特性和能力进行了理论分析,理论研究和仿真试验均表明该免疫控制器具有无偏差跟踪恒定输入的特性.文中针对一类大滞后被控对象仿真研究了该免疫控制器的记忆特性和抗干扰能力. The current immune controllers constructed completely based on the biological immune mechanism are all self adaptive, structure-changing and proportional controllers. They can not track the invariable input without an error. In this paper, based on the two-cell immune nonlinear feedback model for describing the biology function, and combining it with the control system characteristics, we present a structure form of a recognition-intensified two-cell immune controller. The theoretical analysis is then carried out for the first-order tracking ability of the recognition-intensified two-cell controller. Both the theoretical analysis and the simulation indicate that this immune controller can track the invariable imput with null error. The simulations were performed on a class of controlled systems with large values of time-delay, for testing the memory characteristic and the interference-rejection ability of this immune controller.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第4期530-534,共5页 Control Theory & Applications
基金 国家自然科学基金(60573016) 北京市教委重点学科共建项目(XK100080537).
关键词 人工免疫 免疫控制器 一阶跟踪 仿真 artificial immune immune controller first-order tracking simulation
  • 相关文献

参考文献9

  • 1TAKAHASHI K, YAMADA T. Application of an immune feedback mechanism to control systems[J]. JSME Int Journal, Series C, 1998,41(2): 184- 191.
  • 2TAKAHASHI K, YAMADA T. A self-tuning immune feedback controller for controlling mechanical system [C]//Proc ofIEEEAdvanced Intelligent Mechatronics. Tokyo, Japan: Springer, 1997:101 - 107.
  • 3KIM D H, HONG W P, PARK J I. Auto-tuning of reference model based PID controller using immune algorithm[C]//Proc of 2002 World Congress on Computational Intelligence. Piscataway, NJ,USA: IEEE Press, 2002:483 - 488.
  • 4KAWAFUKU M, SASAKI M, TAKAHASHI K. Adaptive learning method of neural network controller using an immune feedback law[C]//Proc of 1999 IEEE/ASME Int Conf on Advanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE Press, 1999:641 - 646.
  • 5KIM D H. Tuning of a PID controller using a artificial immune network model and local fuzzy set[C]//Proc of IEEE Int Symposium on Industrial Electronics. Vancouver, BC, Canada: Springer, 2001, 5:2698 - 2703.
  • 6付冬梅,郑德玲,位耀光.具有记忆与积分能力的双因子免疫控制器及其特性的仿真研究[J].北京科技大学学报,2006,28(2):190-194. 被引量:3
  • 7谈英姿,沈炯,吕震中.基于免疫进化算法的过热汽温自整定PID控制研究[J].热能动力工程,2003,18(1):58-62. 被引量:8
  • 8SERGEI G, YURI M. A simple non-linear model of immune eesponse[J]. Chaos Solitons and Fractals, 2003, 16 (1): 125 - 132.
  • 9TARAKANOV A, DASGUPTA D. A formal model of an artificial immune system[J]. Biosystems, 2000, 55(1/3): 151 - 158.

二级参考文献10

共引文献9

同被引文献31

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部