摘要
在利用传感器进行动态测量时,为了得到精确的测量结果,需要建立传感器动态特性的数学模型,传感器动态特性可以通过系统辨识得到.但是,测量噪声的存在,使得辨识得到的传感器动态特性与实际动态特性存在一定误差,影响到测量系统的精度.为了解决该问题,本文讨论了多项式预测滤波和中值滤波相结合的方法对传感器输出信号进行滤波消噪.然后,利用消噪后的信号,通过系统辨识方法建立传感器动态特性的数学模型.研究表明,采用本文研究的方法可以克服测量噪声对传感器动态特性辨识的影响,并将该方法用于薄膜热电偶的动态特性辨识.
In dynamic measurements, it is necessary to build a mathematical model for a sensor's dynamic characteristic to obtain accurate measurement data, and the sensor's dynamic characteristic can be determined by system identification. However, the noises in measurement may produce adverse influences to system identification, and cause error between the identified characteristic and the real one. To reduce these disadvantageous influences, sensor output signal polluted by additive noise are processed by hybrid filter with polynomial FIR predictors and median (PMH). After the signal is denoised by PMH, the mathematical model of sensor's dynamic characteristic is obtained by system identification. The study shows that the presented approach can reduce the influences of noise. This approach has been applied to the identification of the characteristic of a thin-film thermocouple.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2007年第4期679-682,共4页
Control Theory & Applications
基金
国家自然科学基金(60474079)
江苏省高校自然科学基金(06KJD520099)
关键词
传感器
动态特性
系统辨识
噪声
多项式预测滤波
薄膜热电偶
sensor
dynamic characteristic
system identification
noise
polynomial FIR predictors
thin-film thermocouple