期刊文献+

基于模糊模拟的风险投资项目决策 被引量:4

Decision-making in Venture Capital Investment Based on Fuzzy Simulation
下载PDF
导出
摘要 由于风险投资的高不确定性和风险性,使得人们难以准确预测风险投资项目的收益和状态概率,而只能得到其大致的区间范围。鉴于这种情况,本文将投资项目收益和状态概率描述为模糊变量,利用模糊变量的均值和方差建立了模糊风险投资决策模型,并给出利用模糊模拟方法计算的实例。 As a result of the high uncertainty and the risk of venture capital investment, it is difficult to predict accurately the income and state probability in venture capital project, so its approximate interval range can only be obtained. In view of this kind of situation, the income and state probability in venture capital project are described with fuzzy variable. Then a fuzzy venture capital decision-making model is set up based on the average value and the variance of fuzzy variable, and the corre- sponding computation example using the fuzzy simulation method is provided.
出处 《模糊系统与数学》 CSCD 北大核心 2007年第4期150-155,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(70171004) 民航学院科研启动基金资助项目(06qd01s)
关键词 风险投资 模糊变量 模糊变量均值 模糊变量方差 模糊模拟 Venture Capital Investment Fuzzy Variable Average Value of Fuzzy Variable Variance of Fuzzy Variable Fuzzy Simulation
  • 相关文献

参考文献9

  • 1Ramaswamy S.Portfolio selection using fuzzy decision theory[R].Working Paper of Bank for International Settlements,No.59,1998.
  • 2Watada J.Fuzzy portfolio model for decision making in investment[A].Yoshida Y.Dynamical aspects in fuzzy decision making[C].Heidelberg:Physica-Verlag,2001:141-162.
  • 3Abdel-Kader M G,Dugdale D.Evaluating investments in advanced manufacturing technology:a fuzzy set theory approach[J].British Accounting Review,2001,33(4):455-489.
  • 4Liu B.Theory and practice of uncertain programming[M].Heidelberg:Physica-Verlag,2002.
  • 5Nahmias S.Fuzzy variables[J].Fuzzy Sets and Systems,1978,1(2):97-110.
  • 6Liu B.Uncertain programming[M].New York:Wiley,1999.
  • 7Liu B,Liu Y K.Expected value of fuzzy variable and fuzzy expected value models[J].IEEE Transactions on Fuzzy Systems,2002,10(4):445-450.
  • 8Bellman R E,Zadeh L A.Decision-making in a fuzzy environment[J].Management Science,1970,17(4):141-164.
  • 9Kaufman A,et al.Introduction to fuzzy arithmetic:theory and application[M].New York:Van Nostrand Reinhold,1985.

同被引文献25

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部