期刊文献+

误差敏感竞争性学习算法 被引量:1

A Distortion Sensitive Competitive Learning Algorithm for Vector Quantization
下载PDF
导出
摘要 本文基于等误差准则提出了一种适用于矢量量化技术的新型码书设计算法。实验表明此算法优于现存算法。为解决初始码书赋值问题,本文提出了自生成自组织神经网络方法。实验表明此算法加速了算法的收敛速度。 In this paper, a new competitive learning algorithm based on equidistortion principle for vector quantization (VQ) design was proposed. The experimental results showed that the new algorithm has a better performance than the other known algorithms. To solve the problem of initializing codebooks for VQ, the self creating and organizing neural network (SCONN) was introduced. The experimental results showed that the SCONN algorithm had improved the performance of the known learning algorithms and made them converge faster.
出处 《通信学报》 EI CSCD 北大核心 1997年第6期47-52,共6页 Journal on Communications
基金 国家杰出青年基金 国家教委跨世纪优秀人才专项基金
关键词 矢量量化 等误差准则 竞争学习 数据压缩 vector quantization, equidistortion principle, competitive learning, neural network, data compression
  • 相关文献

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部