期刊文献+

基于分解转移矩阵的PageRank迭代计算方法 被引量:4

A Method of Computing PageRank Based on Transition Matrix Decomposition
下载PDF
导出
摘要 本文提出了一种基于分解转移矩阵的PageRank的迭代计算方法。该方法对PageRank理论模型进一步推导,把其Markov状态转移矩阵进行了分解,从而降低存储开销和计算复杂度,减少I/O需求,使得PageRank计算的工程化实现更为简单。实验表明1 700多万的网页2.8亿条链接,可以在30秒内完成一次迭代,内存需求峰值585MB,可以满足工程化应用的需求。 This paper proposes a method of computing PageRank based on transfer matrix decomposition. Based on the PageRank random surfer model, the method decomposes the Markov states transfer matrix, so that the memory cost, computational complexity and I/O needs are reduced drastically. Experiments show that each iteration can be completed in 30 seconds and that the peak memory demand is 585MB during the PageRank computation of 17 million Web Pages containing 280 million links, indicating that this method meets the demand for engineering applications.
出处 《中文信息学报》 CSCD 北大核心 2007年第5期41-45,共5页 Journal of Chinese Information Processing
基金 863计划重点项目资助(2006AA010105) 北京市教委科技发展计划项目资助(KM200710772010) 北京市属市管高校人才强教计划项目资助(PXM2007_014224_044677 PXM2007_014224_044676)
关键词 计算机应用 中文信息处理 PAGERANK 搜索引擎 Markov状态转移矩阵 矩阵分解 computer application Chinese information processing PageRank search engine Markov state transi- tion matrix matrix decomposition
  • 相关文献

参考文献11

  • 1Sergey Brin,Lawrence Page.The Anatomy of a Large-Scale Hypertextual Web Search Engine[A].In:Proceedings of the 7th International WWW Conference[C].Brisbane,Australia:1998.107-117.
  • 2Taher H.Haveliwala.Efficient Computation of PageRank[R].Stanford University Technical Report.1999.
  • 3Taher Haveliwala,Sepandar Kamvar et al.Extrapolation methods for accelerating PageRank computations[A].In:Proceedings of the 12th International WWW Conference[C].2003.261-270.
  • 4Taher Haveliwala,Sepandar Kamvar,Dan Klein et al.Computing PageRank using Power Extrapolation[R].Technical Report,Stanford University,2003.
  • 5Sepandar Kamvar,Taher Haveliwala,Chris Manning,et al.Exploiting the Block Structure of the Web for Computing Pagerank[R].Stanford University,2003.
  • 6Konstantin Avrachenkov and Nelly Litvak.Decomposition of the Google PageRank and optimal.linking strategy[R].Technical Report,INRIA,January,2004.
  • 7Lawrence Page,Sergey Brin,Rajeev Motwani,et.al.The PageRank Citation Ranking:Bringing Order to the Web[R].Stanford Digital Libraries Working Paper,1998.
  • 8Boldi P,Vigna S.The Webgraph framework Ⅰ:Compression techniques[A].In:Proceedings of the 13th World Wide Web Conference[C].New York:ACM Press,2004.595-601.
  • 9IBM Almaden Research Center,CLEVER Searching[DB/OL].http://www.almaden.ibm.com.
  • 10George Kingsley Zipf.Selective studies and the principle of relative frequency in language[M].Massachusetts:Harvard University Press,Cambridge,1931.

同被引文献34

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部