期刊文献+

中文歌词的统计特征及其检索应用 被引量:8

Statistical Features of Chinese Song Lyrics and its Application to Retrieval
下载PDF
导出
摘要 我们在歌词上做了一些传统的自然语言处理相关的实验。歌词是歌曲语义上的重要表达,因此,对歌词的分析可以作为歌曲音频处理的互补。我们利用齐夫定律对歌词语料库的字和词进行统计特征的考察,实验表明,其分布基本符合齐夫定律。利用向量空间模型的表示,我们可以找到比较相似的歌词集合。另外,我们探讨了如何利用歌词中的时间标注信息进行进一步的分析:例如发现歌曲中重复片段,节奏划分,检索等。初步的实验表明,我们的方法具有一定的效果。 We report experiments on song lyrics based on natural language processing techniques. Song lyrics play an important role of the semantics in songs; therefore, analysis of lyrics may be a complement of acoustic methods. We investigate the lyrics corpus based on Zip'f Law using both character and word as a unit, which proves the validness Zip'f Law in such corpus. Also, we find a set of lyrics that are similar to each other by means of vector space mo- del. Moreover, we discuss how to use the time annotation for further analysis; detecting the repetition of songs identifying rhythms, retrieving songs and soon. Preliminary experiment shows the effectiveness of our proposed method.
出处 《中文信息学报》 CSCD 北大核心 2007年第5期61-67,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60573187 60621062 60520130299)
关键词 计算机应用 中文信息处理 歌词 齐夫定律 K-近邻 节奏 computer application Chinese information processing song lyrics zipf' s law k-NN rhythm
  • 相关文献

参考文献14

  • 1S.Baumann,A.Kluter.Super-Convenience for Non-Musicians:Querying mp3 and the Semantic Web[A].In:Proceedings of the 3rd International Conference on Music Information Retrieval[C].2002,157-163.
  • 2A.Berenzweig,B.Logan,D.Ellis and B.Whitman,A large-scale evaluation of acoustic and subjective music similarity measures[J].Computer Music Journal.2003,28(2),63-76.
  • 3B.Logan,D.Ellis and A.Berenzweig,Towards Evaluation Techniques for Music Similarity[A].In:International Conference.on Multimedia and Expo[C].2003.
  • 4J.P.G.Mahedro,A.Martinez,P.Cano,M.Koppenberger and F.Gouyon,Natural language processing of lyrics[A].In:International Conference.on Multimedia[C].2005.475-478.
  • 5B.Logan,A.Kositsky and P.Moreno,Semantic analysis of song lyrics[A],In:International Conference.on Multimedia[C].2004.827-830.
  • 6G.K.Zipf,Human Behavior and the Principle of Least Effort:An Introduction to Human Ecology[M].Cambridge,Mass Addison-Wesley Press,INC,1949.
  • 7G.Salton,A.Wong.A vector space model for automatic indexing[J].Communications of the ACM,1975,18(11):613-620.
  • 8王煜,王正欧,白石.用于文本分类的改进KNN算法[J].中文信息学报,2007,21(3):76-82. 被引量:15
  • 9Tom Mitchell.Machine Learning[M].McGraw Hill Press,1996.
  • 10D.Bainbridge,S.J.Cunningham and J.S.Downie,Analysis of queries to a Wizard-of-Oz MIR system:Challenging assumptions about what people really want[A].In:International Conference.on Multimedia and Expo[C].2003.

二级参考文献10

  • 1王晓晔,王正欧.K-最近邻分类技术的改进算法[J].电子与信息学报,2005,27(3):487-491. 被引量:25
  • 2王煜,王正欧.基于模糊决策树的文本分类规则抽取[J].计算机应用,2005,25(7):1634-1637. 被引量:13
  • 3Carlota Domeniconi, Jing Peng, Dimitrios Gunopulos.Locally Adaptive Metric Nearest-Neighbor Classification[J]. IEEE TRASACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIENGCE. 2002,24(9) : 1281-1285.
  • 4Jing Peng, Douglas R. Heisterkamp, H. K. Dai. LDA/SVM Driven Nearest Neighbor Classification [J].IEEE TRASACTIONS ON NEURAL NETWORKS.2003,14 (4) :940-942.
  • 5Setiono R, Liu H. Neural network feature selector[J]. IEEE TRANSCATIONS ON NEURAL NETWORKS, 1977,8(3): 654-662.
  • 6David A. White, Ramesh Jain. Similarity indexing with the SS-tree[A]. In: Proceedings of the 12th International Conference on Data Engineering[C]. 1996,516-523.
  • 7Weitschereck D, Aha D W, Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms [J]. AI Review.1997, 11(2): 273-314.
  • 8T. Hastie, R. Tibshirani. Discriminant Adaptive Nearest Neighbor Classification [J]. IEEE TRASACTIONS ON PATTERNANALYSIS and MACHINE INTELLIGENCE. 1996, 18(6) : 607-615.
  • 9周水庚,关佶红,胡运发.隐含语义索引及其在中文文本处理中的应用研究[J].小型微型计算机系统,2001,22(2):239-243. 被引量:41
  • 10代六玲,黄河燕,陈肇雄.中文文本分类中特征抽取方法的比较研究[J].中文信息学报,2004,18(1):26-32. 被引量:228

共引文献14

同被引文献108

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部