摘要
设X为任意Banach空间,X*为其共轭空间,A:D(A)X→X*为可闭的K-正定算子,D(A)=D(K),则存在常数α>0使得x∈D(A),有‖Ax‖≤α‖Kx‖,而且A为闭算子,R(A)=X*,f∈X*,方程Ax=f有唯一解.
Let X be an arbitrary Banach space with a dual X^* and let A : D (A) belong to X→ X^* be a K-positive definite operator with D (A) = D (K). Then there exists a constant α 〉 0 such that ‖Ax ‖ ≤ α ‖Kx‖ ,for all x∈D(A).
Furthermore, the operator A is closed, R (A) = X^* and the equation Ax = f, for each f∈X^* , has a unique solution . In the case X is a Hilbert space, a constructive solvability for the equation Ax = f, for each f∈H, is also given.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2007年第5期575-577,共3页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金(10471033)