期刊文献+

关于可闭的K-正定算子方程的注记

Note on Closed of K-positive Definite Operator Equations
下载PDF
导出
摘要 设X为任意Banach空间,X*为其共轭空间,A:D(A)X→X*为可闭的K-正定算子,D(A)=D(K),则存在常数α>0使得x∈D(A),有‖Ax‖≤α‖Kx‖,而且A为闭算子,R(A)=X*,f∈X*,方程Ax=f有唯一解. Let X be an arbitrary Banach space with a dual X^* and let A : D (A) belong to X→ X^* be a K-positive definite operator with D (A) = D (K). Then there exists a constant α 〉 0 such that ‖Ax ‖ ≤ α ‖Kx‖ ,for all x∈D(A). Furthermore, the operator A is closed, R (A) = X^* and the equation Ax = f, for each f∈X^* , has a unique solution . In the case X is a Hilbert space, a constructive solvability for the equation Ax = f, for each f∈H, is also given.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2007年第5期575-577,共3页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10471033)
关键词 任意BANACH空间 K-正定算子 可解性 arbitrary Banach space K-positive definite operator solvability
  • 相关文献

参考文献2

  • 1PETRYSHYN W V.Direct and Iterative Methods for the Solution of Linear Operator Equations in Hilbert Spaces[J].Trans Amer Math Soc,1962,105:136-175.
  • 2张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部