期刊文献+

动态场景图像序列中运动目标检测新方法 被引量:6

A Novel Approach to Moving Object Detection in Image Sequence Acquired by a Mobile Camera
下载PDF
导出
摘要 在动态场景图像序列中检测运动目标时,如何消除因摄影机运动带来的图像帧间全局运动的影响,以便分割图像中的静止背景和运动物体,是一个必须解决的难题。针对复杂背景下动态场景图像序列的特性,给出了一种新的基于场景图像参考点3D位置恢复的图像背景判别方法和运动目标检测方法。首先,介绍了图像序列的层次化运动模型以及基于它的运动分割方法;然后,利用估计出的投影矩阵计算序列图像中各运动层的参考点3D位置,根据同一景物在不同帧中参考点3D位置恢复值的变化特性,来判别静止背景对应的运动层和运动目标对应的运动层,从而分割出图像中的静止背景和运动目标;最后,给出了动态场景图像序列中运动目标检测的详细算法。实验结果表明,新算法较好地解决了在具有多组帧间全局运动参数的动态场景序列图像中检测运动目标的问题,较大地提高了运动目标跟踪算法的有效性和鲁棒性。 Moving object detection is a very significant and difficult problem in processing image sequence acquired by a mobile camera. The objective of this research is to present a novel method to resolve the moving target detection difficulties, which bring by several layers with different motion parameters of the sequence images. Considering a moving camera, it was hard to distinguish different motion layers led by 3D depth difference of immobile objects from those caused by target moving in scene. Firstly, a mixture model of image was proposed, and the method of motion segmentation based this model were suggested. Secondly, the reconstruction method of scene depth, which employed the motion parameters by EM, was presented. Finally, the detail theory and algorithm of new moving target detection approach, which were based on the scene 3D depth reconstruction, were described. The results indicate that the moving targets detected by the new technique are more accurate than those detected by traditional methods. In addition, the detection speed becomes more-much. The results seem to suggest that the new method be able to provide efficiency and accuracy advantages in computer version.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第9期1590-1597,共8页 Journal of Image and Graphics
关键词 运动分割 运动目标检测 混合模型 仿射运动模型 动态场景 motion segmentation, moving object detection, mixture model, affine motion model, dynamic scene
  • 相关文献

参考文献20

  • 1郑世友,费树岷,龙飞.基于小波提升框架的图像序列中运动目标检测算法[J].中国图象图形学报(A辑),2005,10(5):596-602. 被引量:11
  • 2Mech R,Wollborn M.A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera[J].Signal Processing,1998,66(2):203-217.
  • 3Paul Withagen,Klsmer Schutte,Frans Groen.Object detection and tracking using a likelihood based approach[ A ].In:Proceedings of the ASCI 2002 Conference[ C ],Lochem,The Netherlands,2002:248-253.
  • 4Dufaux F,Konrad J.Efficient,robust and fast global motion estimation for video coding[ J ].IEEE Transactions on Image Processing,2000,9(3):497-500.
  • 5Sarkar A,Biswas M K,Sharma K M S.A simple unsupervised MRF model based image segmentation approach[ J].IEEE Transactions on Image Processing,2000,9(3):80l-812.
  • 6Zhang Tong,Carlo Tomasi.Fast,robust,and consistent camera motion estimation[ A ].In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C ],Los Alamitos,CA,USA,1999,1:164-170.
  • 7Tsaig Y,Averbuch A.Automatic segmentation of moving objects in video sequences:A region labeling approach[ J].IEEE Transactions on Circuits and System for Video Technology,2002,12(7):597-612.
  • 8Neri A,Colonnese S,Russo G,et al.Automatic moving object and background separation[J].Signal Processing,1998,66(2):219-232.
  • 9Chien S Y,Ma S Y,Chen L G.Efficient moving object segmentation algorithm using background registration technique[ J ].IEEE Transactions on Circuits and System for Video Technology,2002,12(7):577-586.
  • 10David A Forsyth,Jean Ponce.Computer Vision:A Modern Approach[ M ].New Jersey:Prentice Hall,2002.

二级参考文献16

  • 1Rice T R A, Alouani T A. Single-model asynchronous fusion of correlated tracks [ A ]. In: Proceedings of the SPIE[ C ] ,Washington, USA, 1999, 3692(3): 234 ~245.
  • 2Cavan R A. Improved tracking and data fusion through sensor management and control [ A ]. In: Proceedings on Data Fusion Symposium[ C ] , Monterey, California, USA, 1987: 66 ~ 65.
  • 3Hong L, Wang W C, Logan M, et al. Multiplatform multisensor fusion with adaptive-rate data communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33( 1 ): 123 ~ 126.
  • 4Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intellisgence, 1989, 11(7): 674 ~ 693.
  • 5Mallat S. Characterization of signals from multi-scale edges [ J ].IEEE Transactions on Pattern Analysis and Machine Intellisgence,1992, 14(7): 710 ~732.
  • 6Sweldens W. The lifting scheme: A construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1997,29(2):511 ~546.
  • 7Sweldens W, Schroder P. Building your own wavelets at home[ R].Technique Report 1995: 5, Technical Report of Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina. Columbia, South Carolina, USA, 1995.
  • 8Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [ J]. Journal of Fourier Analysis and Applications, 1998,4(3): 247 ~269.
  • 9Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Application Computer Harmonic Analysis,1996,3 (2): 186 ~ 200.
  • 10Calderbank R, Daubechies I, Sweldens W. Wavelet transforms hat map integers to integer[ R ]. Princeton University, New Jersey, USA,1996.

共引文献10

同被引文献74

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部