期刊文献+

一种新的基于Kruppa方程的摄像机线性自标定方法

A novel camera linear self-calibration technique based on the Kruppa equations
下载PDF
导出
摘要 针对非线性优化求解Kruppa方程进行摄像机自标定的局部最优问题,提出了一种在特殊情况下的基于Kruppa方程的线性自标定算法.当摄像机在圆周上运动时,首先根据外极线约束关系得到较准确的基本矩阵,然后根据Kruppa方程的未知系数与基本矩阵奇异值分解的参数关系求解摄像机的内外参数.实验结果表明,所得结论和方法是正确和有效的. The Kruppa equation-based camera self-calibration methods using nonlinear optimization are easily stuck in some local minimum. A new method is presented for the linearization of the Kruppa equation under a special case where the camera rotates along the circle path. For the case, the fundamental matrix is firstly computed through epipolar constraint, then the intrinsic and extrinsic parameters of camera are computed by the unknown scale in equation which is represented using the singular value decomposition (SVD)-based factorization result of the fundamental matrix. Experimental results validate the correctness of the proposed method.
作者 王维盛
出处 《西北师范大学学报(自然科学版)》 CAS 2007年第5期22-26,共5页 Journal of Northwest Normal University(Natural Science)
关键词 基本矩阵 奇异值分解 自标定 fundamental matrix singular value decompositiom self-calibration
  • 相关文献

参考文献9

  • 1TSAI R Y.An efficient and accurate camera calibration technique for 3D machine vision[C]//Proceedings of Computer Vision and Pattern Recognition.Miami:IEEE Computer Society Press,1986:364-374.
  • 2ZHANG Z.Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the 7th International Conference on Computer Vision.Kerkyra:IEEE Computer Society Press,1999:666-673.
  • 3MENG X Q,LI H,HU Z Y.A new camera calibration technique based on circular points[C]//Proceedings of British Machine Vision Conference.Bristol:Bristol University Press,2000:496-505.
  • 4FAUGERAS O,LUONG Q T,MAYBANK S.Camera self-calibration:theory and experiments[C]//Proceedings of the 2nd European Conference on Computer Vision.Santa Margherita Ligure:Springer-Verlag,1992:321-334.
  • 5MAYBANK S,FAUGERAS O.A theory of self-calibration of a moving camera[J].International Journal of Computer Vision,1992,8 (2):123-151.
  • 6WAMPLER C,MORGAN A,SOMMESE A.Numerical continuation methods for solving polynomial systems arising in kinematics[J].ASME Trans Mechanical Design,1990,112(1):59-68.
  • 7ZELLER C,FAUGERAS O.Camera self -calibration from video sequences:the Kruppa equations revisited[ R ].Research Report 2793.Edinburgh:INRIA Sophia-Antipolis,1996:675-684.
  • 8PRESS W H,FLANNERY B P,TEUKOLSKY S A,et al.Numerial Ricipes in C:The Art of Sciencitific Computing[ M ].Cambridge:Cambridge University Press,1988:123-137.
  • 9HARTLEY R I.Kruppa's equations derived from the fundamental matrix[J].IEEE Trans on PAMI,1999,19(1):133-135.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部