摘要
本文利用单调集函数的4种连续性的定义和可测函数序列的4种收敛性之间的关系,提出了4种类型的Lebesgue定理,并给出了单调集函数在空集连续,全集连续的充要条件。
With four continuity of non - additive set function and the relation of four convergences of the measurable function sequence, four forms Lebesgue theorem about measurable closed - valued functions on monotone measure space are discussed, respectively . And the sufficient and necessary conditions of the monotone set function which is continuous of the empty set and the full set are given.
出处
《青岛农业大学学报(自然科学版)》
2007年第3期238-240,共3页
Journal of Qingdao Agricultural University(Natural Science)