期刊文献+

迹为零的几类特殊本原矩阵的本原指数

The Primitive Exponent of Several Specific Primitive Matrices with Trace Zero
下载PDF
导出
摘要 对本原矩阵指数集研究中的另一方面是研究一些特殊的本原矩阵类的本原指数.邵嘉裕先生和李乔先生在这一领域取得了一些令人满意的结果[1].邵嘉裕先生[2]给出了一个特殊的本原矩阵——对称本原矩阵类的指数集合En={m∈Z+|存在某个n阶对称本原阵A,使γ(A)=m},并且给出了En的完全刻划.我们考虑一个特殊的本原矩阵类:对角元为零的几类特殊本原矩阵类的指数集.记对角元为零的本原矩阵集为T0n.证明一类对角线为零的最小圈长n-d+1的特殊本原有向图的指数集.这里的d是满足:大于等于2但小于n/2的偶数,且gcd(n,n-d+1)=1. Another aspect in the study of the exponent set of primitive matrices focuses on the exponent set of primitive matrices of some specific primitive matrices. Chinese scholars have contributed a lot in this area, among whom Professor Shao Jiayu and Professor Li Qiao are two distinguished figures. They have achieved satisfactory discoveries. Professor Shao Jiayu proposed a special primitive matrices-the symmetric exponent set of primitive matrices and pointed out that En^~ = { m ∈ Z^+ | has an order symmetric primitive matrix A which brings the result: γ(A) = m }. He also gave a sound description of En^~ . In this thesis, we discuss one special type of primitive matrices: We discuss the several exponent set of primitive matrices on n vertices with trace zero and primitive matrices Tn^0. with trace zero The thesis proves one exponent set of primitive directed graph with trace zero and the minimum length of the circle equals n - d + 1 . Here d is even which exceeds or equals 2, and less than [n/2] and ged(n,n-d+1)=1.
作者 吕雪芹
出处 《怀化学院学报》 2007年第2期19-22,共4页 Journal of Huaihua University
关键词 对称本原矩阵 本原指数 最小圈长 symmetric primitive matrices primitive exponent trace the minimum length of the circle
  • 相关文献

参考文献5

二级参考文献9

  • 1邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 2邵嘉裕.对称本原矩阵的指数集[J].中国科学:A辑,1986,9:931-939.
  • 3欧阳克智 等.双向连通竞赛图的本原指标.新疆大学学报,1987,4(2):13-16.
  • 4VargaRS著 蒋尔雄等译.矩阵迭代分析[M].上海:上海科技出版社,1986..
  • 5欧阳克智 赵剑.关于本原指标缺数的新结论.兰州大学学报,1985,21(2):14-17.
  • 6李乔,高校应用数学学报,1988年,3卷,2期,186页
  • 7柯召,数论讲义.上,1986年
  • 8邵嘉裕,Linear Algebra and Its Applications,1985年,64卷,21页
  • 9柳柏濂.组合矩阵论[M].北京:科学出版社,1998..

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部