期刊文献+

钢铁企业合作创新项目选择的模糊聚类分析 被引量:3

A Fuzzy Cluster Analysis on Choice of Alternatives in Steel Enterprise Cooperation Innovation
下载PDF
导出
摘要 在合作创新过程中,针对区间数的评价信息,提出一种基于遗传算法的模糊聚类方法。考虑方案各准则的权重、准则值为区间数,同时要求对聚类中心各准则值有严格序关系。然后结合隶属度变量构建优化模型,利用具有动态惩罚函数的遗传算法求解,计算得到各方案的所属类别。实例证明了该方法的有效性和可靠性。 In the process of cooperation innovation, a fuzzy c-mean method base on genetic algorithms with the interval number is proposed. The weight of criterion and the value of the criterion with interval number is considered, meanwhile, the criterion value of each cluster is required for serious preface. Then optimization model with the membership degree is constructed. It is solved by using genetic algorithms with dynamical castigatory function. And the given example proves the method is reasonable and effective.
出处 《系统工程》 CSCD 北大核心 2007年第3期56-60,共5页 Systems Engineering
关键词 钢铁企业 合作创新 模糊聚类 区间数 遗传算法 Steel Enterprise Cooperation Innovation Fuzzy Cluster Interval Number Generate Algorithm
  • 相关文献

参考文献8

二级参考文献25

  • 1王坚强.信息不完全的多准则层次分类方法研究[J].控制与决策,2004,19(11):1237-1240. 被引量:15
  • 2庞元正.以持续全国创新不断提升国际竞争力[M].北京:中共中央党校出版社,2001.49-102.
  • 3Ruspini E H. A new approach to clustering[J]. Inform Controt, 1969,15:22-32.
  • 4Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84:49-60.
  • 5Zadeh L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971,3:177.
  • 6Tamra S. Pattern classification based on fuzzy relations[J]. IEEE Transactions on Systems, Man and Cybernetics, 1971,1(1):217.
  • 7Yang M S. On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57:365.
  • 8Pezdrey W. Condition fuzzy C-means[J]. Recognition Letters, 1996,17:625.
  • 9Yager R R, Detyniecki M, Bouchon-Meunier B. A context-dependent method for ordering fuzzy numbers using probabilities[J]. Information Sciences, 2001,138:237-255.
  • 10Ishibuchi H, Tanaka H. An architecture of networks with interval weights and its applications to fuzzy regression analysis[J]. Fuzzy Sets and Systems, 1993,57(1):27-39.

共引文献39

同被引文献38

  • 1杜伟.企业技术创新动力的基本构成分析及现实启示[J].软科学,2005,19(4):77-79. 被引量:29
  • 2柳炳祥,李海林.基于模糊聚类分析的企业技术密度水平评价[J].统计与决策,2007,23(7):50-51. 被引量:2
  • 3Ruspini E H. A new approach to clustering[ J ]. In-form Controt, 1969(15) :22-32..
  • 4Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data [ J ]. Fuzzy Sets and Systems, 1996,84 : 49-60.
  • 5Yang M S,Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data [ J ]. Fuzzy Sets and Systems, 1996,84 (9) :49-60.
  • 6Yang M S. On a class of fuzzy classification maximum likeli- hood procedures [J ].Fuzzy Sets and Systems, 1993,57(2): 365-371.
  • 7Veugelers R,Cassiman B. Make and Buy in Innovation Strate gies~ Evidence from Belgium Manufacturing Firms [J]. Re search Policy, 1999,28(1):32-45.
  • 8Grieco D. Degree of innovativeness and market structure: A model[J]. Iefai University Journal of Managerial Economics, 2007,14(2) :18-27.
  • 9Steil B,Victor D G, Nelson R R. Technological innovation and economic performance [M]. Princeton, NJ : Princeton Universi- ty Press,2002.
  • 10王坚强.基于模糊聚类的信息不完全确定的多准则分类方法[J].系统工程与电子技术,2007,29(8):1288-1291. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部