期刊文献+

具有不对称风险交互效应的R&D项目组合选择方法 被引量:20

Investment Combination Selection
下载PDF
导出
摘要 研究具有不对称风险交互效应的R&D项目组合选择问题。通过风险关联度来刻画风险交互效应,给出了项目在组合中的风险计量方法,并建立了具有资源约束的双目标规划模型。设计了以最大化组合期望收益为主、最小化组合风险为辅的一种启发式算法。通过实验分析,指出了算法在运行时间与执行效果上的有效性。 This paper investigates the problem of R&D project portfolio with asymmetry risk interaction, where the project risk in a portfolio is defined by the associative risk parameter. A mathematic model of bi-objective is set up where the main objective is to maximize the expected portfolio revenue, and the secondary one is to minimize the portfolio risk. The expectation revenue adjustment index is adopted to trade off the two objectives of the model. A heuristic algorithm is proposed, illustrated by an explanatory instance. It is pointed out with experiment that the algorithm is efficient in both running time and performance.
出处 《系统工程》 CSCD 北大核心 2007年第2期18-21,共4页 Systems Engineering
基金 国家自然基金资助项目(70602031) 陕西省软科学资助项目(2006KR71)
关键词 R&D项目组合 风险交互效应 风险关联度 R&D Project Portfolio Risk Interaction Associative Risk Parameter
  • 相关文献

参考文献8

  • 1徐维军,徐寅峰,王迅,张卫国.收益率为模糊数的加权证券组合选择模型[J].系统工程学报,2005,20(1):6-11. 被引量:7
  • 2刘俊礼.投资组合选择的简化算法及其应用[J].北京航空航天大学学报(社会科学版),2006,19(1):16-19. 被引量:2
  • 3Beaujon G J,Marin S P,McDonald G C.Balancing and optimizing a portfolio of R&D projects[J].Naval Research Logistics,2001,48:18-40.
  • 4Danila N.Strategic evaluation and selection of R&D projects[J].R&D Management,1989,19:47-62.
  • 5Goldstein P M S,Howard M.A note on economic models for R&D project selection in the presence of project interactions[J].Management Science,1986,32(10):1356-1360.
  • 6Kuchta D.A fuzzy model for R&D project selection with benefit,outcome and resource interactions[J].Engineering Economist,2001,46(3):164-175.
  • 7Cooper R G,Edgett S J,Kleinschmidt E J.New problems,new solutions:making portfolio management more effective[J].Research Technology Management,2000,43(2):16-28.
  • 8Chiesa V.R&D strategy & organization-managing technical change in dynamic contexts[A].Series on technology management(Vol.5)[C].London:Imperial College Press,2001.

二级参考文献17

  • 1[1]Elton E J,Gruber M J,Padberg W.Simple Criteria for Optimal Portfolio Selection[J].Journal of Finance,1976,31(4):1341-1357.
  • 2[2]Elton E J,Gruber M J,Padberg W.Optimal Portfolio from Simple Ranking Devices[J].Journal of Portfolio management,1973,4(1):15-19.
  • 3[3]Sharpe W F.A Simplified Model for Portfolio Analysis[J].Management Science,1963,9(1):277-293.
  • 4[4]Lintner J.The Valuation of Risk Assets on the Selection of Risky Investments in Stock Portfolio and Capital Budget[J].The Review of Economics and Statistics,1965,8(1):13-37.
  • 5[5]Elton E J,Gruber M J.Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection[J].Journal of Finance,27(4):1203-1233.
  • 6Best M J, Hlouskova J. The efficient frontier for bounded assets[J]. Mathematics of Operations Research, 2000, 52: 195-212.
  • 7Merton R C. An analytic derivation of the efficient frontier[J]. Journal of Finance and Quantitative Analysis, 1972, 9: 1851-1872.
  • 8Voros J. Portfolio analysis: An analytic derivation of the efficient portfolio frontier[J]. European Journal of Operational Research, 1986, 203: 294-300.
  • 9Dubois D, Prade H. The mean value of a fuzzy number[J]. Fuzzy Sets and Systems, 1987, 24: 279-300.
  • 10Carlsson C, Fullér R. On possibilistic mean value and variance of fuzzy numbers[J]. Fuzzy Sets and Systems, 2001, 122: 315-326.

共引文献7

同被引文献194

引证文献20

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部