期刊文献+

神经系统识别爆发性锋电位序列的机制讨论

DISCUSSION ON THE BURST SPIKE TRAIN RECOGNITION MECHANISMS IN NERVOUS SYSTEM
下载PDF
导出
摘要 讨论神经系统识别爆发型锋电位序列信息的机制,认为序列的信息存储在爆发锋电位组内间隔和组间间隔2个时间变量中,建立了一个神经回路,通过突触传递过程中的易化、反馈调节机制以及时间依赖的学习机制等突触可塑性机制,给出了神经系统识别爆发性锋电位序列信息的一种可能机制,其中包括分解机制和整合机制两部分.首先通过神经元选择性响应的动力学性质,将锋电位序列的信息分解,并将每组锋电位内部间隔的信息通过不同神经元学习存储.通过突触延迟时间的动力学调整,将2组锋电位之间的时间间隔学习、存储在回路中.经过多次学习训练,神经回路对输入信号形成特定的突触连接结构以及时空响应输出模式,实现对爆发性锋电位序列信息的识别. To discuss the burst spike train recognition mechanisms in nervous system, the information of the train is supposed as in the intraburst period and the interburst period. A neural circuit is designed to give a possible mechanism for the burst spike train recognition based on the biological mechanisms of synaptic facilitation, feedback modulation and spike-time dependent plasticity. Firstly the burst spike train is decomposed into isolated spikes through the selective response property of the Hodgkin-Huxley neuron and the intraburst period information is transferred separately by different neurons. Secondly, the interburst period information is learned and stored in the synaptic delay times by the dynamic modulation of the synapses. After training, a specifically synaptic connectivity structure is formed in the neural circuit, and the input burst spike train is recognized by the output temporal-spatial pattern.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期474-480,共7页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(60534080 60374010 70471080)
关键词 爆发性锋电位 突触可塑性 突触延迟时间 神经回路 burst spike synaptic plasticity synaptic delay time neural circuit
  • 相关文献

参考文献15

  • 1Buonomano D V,Merzenich M M.Temporal information transformed into a spatial code by a neural network with realistic properties[J].Science,1995,267:1028.
  • 2Izhikevich E M.Polychronization:computation with spikes[J].Neural Computation,2006,18:245.
  • 3Abarbanel H D I,Talathi S S.Neural circuitry for recognizing interspike interval sequences[J].Phys Rev Lett,2006,96:148104.
  • 4Oswald A M,Chacron M J,Doiron B,et al.Parallel processing of sensory input by bursts and isolated spikes[J].J Neurosci,2004,24(18):4351.
  • 5Reinagel P,Godwin D,Sherman M,et al.Encoding of visual information by LGN bursts[J].J Neurophysiol,1999,81:2558.
  • 6Kepecs A,Lisman J.Information encoding and computation with spikes and bursts[J].Network,2003,14:103.
  • 7Abbott L F,Regehr W G.Synaptic computation[J].Nature,2004,431:796.
  • 8Baudry M.Synaptic plasticity and learning and memory:15 years of progress[J].Neurobiology of Learning and Memory,1998,70:113.
  • 9Bliss T V,Collingridge G L.A synaptic model of memory:long-term potentiation in the hippocampus[J].Nature,1993,361:31.
  • 10王建军.神经科学-探索脑[M].2版.北京:高等教育出版社,2004:743-772.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部