期刊文献+

应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因 被引量:8

Isolating Soil Drought-induced Genes from Maize Seedlings Leaves Through Suppression Subtractive Hybridization
下载PDF
导出
摘要 【目的】分离土壤干旱胁迫条件下玉米幼苗期叶片诱导表达的基因。【方法】本研究利用抑制差减杂交(suppression subtractive hybridization,SSH)的方法,以耐旱自交系CN165为材料,构建了土壤干旱胁迫下玉米幼苗叶片的正向抑制差减cDNA文库。【结果】在这个文库中,随机挑取了672个阳性克隆,并进行PCR验证,对所有的单克隆进行了测序。得到了598个有效序列,经过EST聚类分析后,共得到了80个uniESTs。其中57个为contigs。23个为singlets。BLASTN的结果表明,所有的uniESTs都可以在玉米的核酸数据库中找到同源序列。BLASTX的结果表明:68个uniESTs和已知功能的蛋白有高度的相似性,8个uniESTs为未知功能蛋白和假定蛋白,4个uniESTs没有蛋白质的相似性。【结论】在这个cDNA文库中发现了大量抗旱相关的基因,这些基因涉及到植物代谢的多种途径。 [Objective] Isolation and analysis soil drought-induced genes from maize seedlings leaves. [Method] A forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of "CN165", a drought-tolerant maize inbred line. [Result]In the SSH library, 672 positive clones were picked up randomly. After PCR of each clone, all the single clones were sequenced. Totally 598 available sequences were obtained. After cluster anslysis of the ESTs sequences, 80 uniESTs were obtained, among which 57 uniESTs were contigs and 23 uniESTs were singlets. The results of BLASTN showed that all the uniESTs had homologous sequences in the nr database. The BLASTX results indicated that 68 uniESTs had significant protein homology, eight uniESTs were unknown proteins and putative proteins, and four uniESTs had no protein homology. [ Conclusion ] A large group of drought stress-induced genes were found in the cDNA library, which involved in many metabolism pathways.
出处 《中国农业科学》 CAS CSCD 北大核心 2007年第5期882-888,共7页 Scientia Agricultura Sinica
基金 国家自然科学基金(30571133) 科技部国际合作项目(0502) 北京市农业育种基础创新平台项目(YEPT02-06)
关键词 玉米 干旱诱导 抑制差减杂交法 耐旱基因 Maize seedlings Drought stress Suppression subtractive hybridization(SSH) uniESTs
  • 相关文献

参考文献30

  • 1李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究,2003,21(2):99-104. 被引量:52
  • 2杨瑞丽.植物抗旱机制研究进展[J].内蒙古科技与经济,2003(4):107-108. 被引量:10
  • 3Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance.Planta,2003,218:1-14.
  • 4Shinozaki K,Yamaguchi-Shinozaki K.Molecular responses to drought and cold stress.Current Opinion in Biotechnology.1996,7:161-167.
  • 5Shinozaki K,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response.Plant Physiology,1997,115:327-334.
  • 6Shinozaki K,Yamaguchi-Shinozaki K.Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways.Current Opinion in Plant Biology,2000,3:217-223.
  • 7Bray E.Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana:an analysis using microarray and differential expression data.Annals of Botony,2002,89:803-811.
  • 8Reddy A R,Ramakrishna W,Chandra sekhar A,Ithal N,Ravindra Babu P,Bonaldo M F,Soares M B,Bennetzen J L.Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L.subsp.indica cv.Nagina 22).Genome,2002,45:204-211.
  • 9Ozturk Z N,Talame V,Deyholos M,Michalowski C B,Galbraith D W,Gozukirmizi N,Tuberosa R,Bohnert H J.Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley.Plant Molecular Biology,2002,48:551-573.
  • 10Diab A A,Teulat-Merah B,This D,Ozturk N Z,Benscher D,Sorrells M E.Identification of drought-inducible genes and differentially expressed sequence tags in barley.Theoretical and Applied Genetics,2004,109:1417-1425.

二级参考文献107

  • 1邱德有,朱澂.植物的热激蛋白[J].植物生理学通讯,1994,30(2):139-142. 被引量:9
  • 2费云标,黄涛,舒念红,江勇.热激蛋白的分子生物学研究进展[J].植物学通报,1995,12(1):1-5. 被引量:9
  • 3刘德立.植物热激蛋白及其功能[J].植物学通报,1996,13(1):14-19. 被引量:9
  • 4贾文锁,王学臣,张蜀秋,娄成后.水分胁迫下ABA由蚕豆根向地上部的运输及其在叶片组织中的分布[J].植物生理学报(0257-4829),1996,22(4):363-367. 被引量:26
  • 5刘良式等编著.植物分子遗传学[M].科学出版社,.171-173.
  • 6Van Renshurg L, Kruger H, Rreytenbach J, et al. Immunogold localization and quantification of cellular and subcellular ahscisic acid, prior to and during drought stress [J].Biotech Histochem, 1996,71:38--43.
  • 7Passioura J B. Root singnals control leaf expansion in wheat seedlings growing in drying soil[J]. Australian Journal of Plant Physiology, 1988,15 : 687--693.
  • 8Pastor A, Lopez-Carbonell M, Alegre L. Abscisic acid immunolocalization and ultrastructural changes in water-stressed lamender (Lavandula stoechsas L. ) plants[J]. Physiol Plant,1999,105:272--279.
  • 9Wilkinson S, Corlett J E, Oger L, et al. Effects of xylem sap pH on transpiration from wild-type and flacca mutant tomato leaves : a vital role for abscisic acid in preventing excessive water loss from well-water plant [J]. Plant Physiol, 1998,117:703--709.
  • 10Mansfield T A, Wellburn A R, Moreira T J. The role of abscisic acid and farnesol in the alleviation of water stress[A].Goodwin T W. The biochemical functions of terpenoids in plants[C]. Philosophical Transactions of the Royal Society of London, 1978,284:471--482.

共引文献138

同被引文献175

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部