期刊文献+

CONVERGENCE RATE FOR ITERATES OF q-BERNSTEIN POLYNOMIALS

CONVERGENCE RATE FOR ITERATES OF q-BERNSTEIN POLYNOMIALS
下载PDF
导出
摘要 Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein polynomials and their Boolean sum are estimated. Moreover, the saturation of {Bn(., qn)} when n → ∞ and convergence rate of Bn(f,q;x) when f ∈ C^n-1 [0, 1], q → ∞ are also presented. Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein polynomials and their Boolean sum are estimated. Moreover, the saturation of {Bn(., qn)} when n → ∞ and convergence rate of Bn(f,q;x) when f ∈ C^n-1 [0, 1], q → ∞ are also presented.
出处 《Analysis in Theory and Applications》 2007年第3期243-254,共12页 分析理论与应用(英文刊)
关键词 q-Bernstein operator convergence rate saturation of positive lienar operator iterates q-Bernstein operator, convergence rate, saturation of positive lienar operator,iterates
  • 相关文献

参考文献10

  • 1Phillips,G.M.Bemstein Polynomials Based on the q-Integers[].AnnNumer Math.1997
  • 2Goodman,T.N.T,Oruc,H,and Phillips,G.M.Convexity and Generalized Bernstein Polynomials[].ProEd- inburgh MathSot.1999
  • 3Oruc,H,and Tuncer,N.On the Convergence and Iterates of q-Bemstein Polynomials[].Journal of Approximation Theory.2002
  • 4Ostrovska,S.q-Bemstein Polynomials and Their Iterates[].Journal of Approximation Theory.2003
  • 5Videnskii,V.S.On Some Classes of q-Parametric Positive Linear Operators[].OperTheory AdvAppl.2005
  • 6Wang,H.P.The Rate of Convergence of q-Bemstein Polynomials for 0<q<1[].Journal of Approximation Theory.2005
  • 7Xie,T.F,and Zhou,S.P.Approximation of Real Functions[]..1998
  • 8Gonska H H,Zhou Xinlong.Approximation theorems for the iterated Boolean sums of Bernstein operators[].Journal of Computational and Applied Mathematics.1994
  • 9Alexander Il’inskii and Sofiya Ostrovska.Convergence of Generalized Bernstein Polynomials[].Journal of Approximation Theory.2002
  • 10Wang Heping.Korovkin-type theorem and application[].Journal of Approximation Theory.2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部