期刊文献+

基于多重耦合降噪的混沌测量研究 被引量:2

Study of Chaotic Measurement Based on Noise Reduction by Multi-Coupling
下载PDF
导出
摘要 混沌测量系统对噪声的敏感性很高,为了增强其抗噪声干扰的能力,提高系统的测量精度,该文提出对混沌测量电路进行多重耦合.从理论上推导了该方法的可行性,并且通过实验进一步从序列符号距离和线性度两方面进行比较,结果表明经过多重耦合的混沌测量电路,与未耦合以及相邻耦合的测量系统相比,具有更强的噪声抑制能力.因此在耦合测量系统中,系统耦合强度与其噪声抑制能力成正比,在相同个数测量电路参与耦合的情况下,本文所提出的多重耦合方式可以使测量系统得到较优的测量精度及稳定性. Chaotic system is highly sensitive to noise. So in order to strengthen its noise reduction ability and improve measurement precision, a system composed of multi-coupling chaotic measurement circuits is proposed, which is validated theoretically. Further experiment also shows that multi-coupling circuits have a better noise reduction performance both in symbol distance and linearity, compared with the single one and side coupling ones. The result shows that system's coupling strength is in direct proportion to its noise reduction ability, and multi-coupling is more precise and robust than the other coupling methods while the same number circuits joining in the coupling.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第3期592-595,共4页 Chinese Journal of Sensors and Actuators
基金 浙江省自然科学基金资助项目(602127)
关键词 混沌 多重耦合 降噪 测量 chaos multi-coupling noise reduction measurement
  • 相关文献

参考文献9

二级参考文献13

  • 1黄文高,童勤业.测量技术中的混沌方法[J].浙江大学学报(工学版),2001,35(5):546-549. 被引量:2
  • 2[1]Freeman W J. Tutorial on neurobiology from single neurons to brain chaos. J of Bifurcation and Chaos,1992,2(3):451-482.
  • 3郑伟谋,实用符号动力学,1994年,11页
  • 4Hao Bailin,Chao,1990年,1页
  • 5CHEN G. From chaos to order [J]. International Journal of Bifurcation and Chaos, 1993, 3(6): 1363-1409.
  • 6PECORA L. Overview of chaos and communication research [A]. SPIE Proceedings of Chaos and Communications Conference 2038[C]. San Diego, CA: SPIE, 1993: 252-261.
  • 7FREEMAN W J. Tutorial on neurobiology: From single neurons to brain chaos [J]. International Journal Bifuracation and Chaos, 1999, 2(3): 451-482.
  • 8HAO B. Elementary symbolic dynamics and chaos in dissipative system [M]. Singapore: World Scientific, 1989.
  • 9童勤业,严筱刚,孔军,薛宗琪.“混沌”理论在测量中的应用[J].电子科学学刊,1999,21(1):42-49. 被引量:52
  • 10陈素琴,袁瑞跃,童勤业.多数制式混沌A/D变换器研究[J].计量学报,2000,21(1):12-16. 被引量:7

共引文献68

同被引文献19

  • 1金文光,诸东强,童勤业.混沌测量电路耦合降噪研究[J].浙江大学学报(工学版),2005,39(2):190-194. 被引量:1
  • 2于津江,曹鹤飞,许海波,徐权.复合混沌系统的非线性动力学行为分析[J].物理学报,2006,55(1):29-34. 被引量:22
  • 3于津江,许海波.混沌的乘法规律[J].物理学报,2006,55(1):42-46. 被引量:11
  • 4Ott E,et al.Controlling Chaos[J].Physical Rev Lett,1990,64(11):1196-1199.
  • 5Elwakil A S,Soliman A M.Current Conveyor Chaos Generators[J].Circuits and Systems Ⅰ:Fundamental Theory and Applications.IEEE Transactions,1999,46(3):393-398.
  • 6George J M,Robert M B.Convergence and Divergence in Neural Networks:Processing of Chaos and Biological Analogy[J].Neural Networks,1992,5(4):605-625.
  • 7Parker T S,Chua L O.Chaos:A Tutorial for Engineers[J].Proceedings of the IEEE,1987,75 (8):982-1008.
  • 8Kuniyoshi Y,Suzuki S.Dynamic Emergence and Adaptation of Behavior Through Embodiment as Coupled Chaotic Field[C]//Proc of IEEE/RSJ Intelligent Robots and Systems,2004,2(28):2042-2049.
  • 9Roman A,Filatov,Alexander E.Chaotic Synchronization in Coupled Spatially Extended Beam-plasma System[J].Physics Letter A,In press,Corrected Proof.
  • 10Carrillo H, Hoppensteadt F. Unfolding an electronic integrate-and-fire circuit [ J ] . Biological Cybernetics, 2010,102(1) :1 -8.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部