期刊文献+

一类含有两个分支2-因子的无爪图

A Class of Claw-free Graphs Have 2-factor with Two Components
下载PDF
导出
摘要 文章主要证明了若图G是阶为n,n>9的连通无爪图,G中至少存在一个非局部连通点或一个单纯点,M(G)={x|x∈V(G),x局部连通}是G的一个连通控制集,则G含有两个分支的2-因子。 Let G be a claw-free graph, IGI〉9, M(G) the set of all vertices of G that have a connected neighborhood,and (M (G)) the induced subgraph of Gon M (G),we prove that if G has at least a nonconnected neighborhood vertice or a simple vertice, M(G) dominates G and (M(G)) is connected,then Ghave 2-factor with two components.
出处 《江西教育学院学报》 2007年第3期10-14,共5页 Journal of Jiangxi Institute of Education
关键词 无爪图 控制集 2-因子 claw-free graph donminating set 2-factor
  • 相关文献

参考文献6

  • 1Bondy,J.A,Muny,U.S.R.Graph theory with applications Macmillan[M].London and Elsevier,NewYork,1976.
  • 2Faudree,R.,Ryjacek Z,Schiermeyer,I.Local connectivity and cycle extension in claw free graphs[J].Ars Combin,1997,(47).
  • 3Ryjacek,Z.On a closure concept in claw free graphs[J].J.Combin Theory B,1997,(70).
  • 4Ryjacek.Z,Saito,A.,Schelp,R.H.Claw free graphs with complete closure[J].Discrete Math 2001,(236).
  • 5Brandt,S,Facaron,O.,Ryjacek,Z.Closure and stable Hamiltonian properties in claw free graphs[J].J.Graph Theory,2000,(34).
  • 6Fouquet,J.L.A strengthing of Ben Rebea's lemma[J].J.Combin Theory Ser 1993,(859).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部