摘要
文章主要证明了若图G是阶为n,n>9的连通无爪图,G中至少存在一个非局部连通点或一个单纯点,M(G)={x|x∈V(G),x局部连通}是G的一个连通控制集,则G含有两个分支的2-因子。
Let G be a claw-free graph, IGI〉9, M(G) the set of all vertices of G that have a connected neighborhood,and (M (G)) the induced subgraph of Gon M (G),we prove that if G has at least a nonconnected neighborhood vertice or a simple vertice, M(G) dominates G and (M(G)) is connected,then Ghave 2-factor with two components.
出处
《江西教育学院学报》
2007年第3期10-14,共5页
Journal of Jiangxi Institute of Education
关键词
无爪图
控制集
2-因子
claw-free graph
donminating set
2-factor