期刊文献+

基于PSO的BP训练算法 被引量:5

Approach for optimizing BackPropagation training based on PSO
下载PDF
导出
摘要 在BP训练算法中,关于变权值、学习速率、步长的问题已被广泛地研究,几种基于启发式改进的技术也表明具有改善训练时间以及避免陷入局部最小的明显效果。这里BP训练过程由基于PSO同时优化log-Sigmoid函数与网络权值的新算法(PSO-GainBP)实现。实验结果表明,PSO-GainBP比传统基于PSO的BP算法在网络训练方面具有更好的性能。 The issue of variable weight, learning rate, step size and bias in the Backpropagation training algorithm has been widely investigated. Several techniques employing heuristic factors are suggested to improve training time and reduce convergence to local minima. Backpropagation training is based on a new approach in which variable gain of the log-sigmoid function and weights of the network are both optimized by using particle swarm optimization technique. The new approach is implemented and the training result demonstrates that the new approach is more efficient than usual BP algorithm based on PSO.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第17期4205-4206,4232,共3页 Computer Engineering and Design
基金 武器装备预研基金项目(51412040205JW1613)
关键词 反向传播算法 粒子群优化 神经网络 传输函数 早熟收敛 BP algorithm particle swarm optimization ANN transfer function mature convergence
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R.Particle swarm optimization[J].IEEE International Conference on Neural Networks,1995,4(27):1942-1948.
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995:39-43.
  • 3Gudise V G,Venayagamoorthy G K.Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks[C].Proceedings of the IEEE on Swarm Intelligence Symposium,2003:110-117.
  • 4Shoujue Wang,Yangyang Liu.The structure and function of neurons with variable nonlinear transfer function[J].International Conference on Neural Networks and Brain,2005(1):298-300.
  • 5Richard O Duda,Peter E Hart,David G Stork.模式分类[M].北京:机械工业出版社,2004:197-211.
  • 6Kennedy J.Stereotyping:improving particle swarm performance with cluster analysis[C].Proceedings of the Congress on Evolutionary Computation,2000:1507-1512.
  • 7Huiyuan Fan.A modification to particle swarm optimization algorithm[J].Engineering Computations,2002,19(8):970-989.
  • 8Kennedy J,Mendes R.Population structure and particle swarm performance[C].Proceedings of the Congress on Evolutionary Computation,2002:1671-1676.

共引文献2

同被引文献49

  • 1周梅,李政,凌海波,王坎,蔡俊雄.基于BP神经网络的义水河水环境质量评价研究[J].环境科学与技术,2012,35(S1):385-388. 被引量:10
  • 2高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 3潘昊,侯清兰.基于粒子群优化算法的BP网络学习研究[J].计算机工程与应用,2006,42(16):41-43. 被引量:67
  • 4贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 5Jaeger H,Haas H.Harnessing non-linearity:Predicting chaotic systems and saving energy in wireless communication[J].Science,2004,304:78-80.
  • 6Kennedy J,Eberhart R.Partiele swarm optimization[J].IEEE International Conference on Neural Networks,1995,27(4):1942-1948.
  • 7Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].Proceedings of the Sixth International Symposiumon MicroMachine and Human Science,1995:39-43.
  • 8Gudise V G,Venayagamoorthy G K.Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks[C].Proceedings of the IEEE on Swarm Intelligence Symposium,2003:110-117.
  • 9Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in Particle Swarm Optimization[C].Proceedings of the Congress on Evolutionary Commutating,2000:84-88.
  • 10Carlisle A,Dozier G.An off-the-shelf PSO[C].Proceedings of the Particle Swarm Optimization Workshop,2001:1-6.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部