期刊文献+

变分辨率的曲面重建算法 被引量:2

Variable Resolution Reconstruction of Surface
下载PDF
导出
摘要 在研究平均二次误差与曲面曲率关系的基础上,提出了变分辨率的曲面重建算法。该算法首先在给定的平均二次误差门限下,自适应于曲面曲率大小,将最小立方体包围盒按八叉树结构分割成许多大小不同的立方体,并在立方体内部用Marching cubes(MC)算法进行等值面提取;然后用垂直投影法对大小不同且又相邻的立方体间产生的缝隙进行拼接,并输出最终的网格模型。算法的主要优点是能自动用较大和较小的三角形分别去逼近曲面的小曲率和大曲率区域,不但能够恢复模型的细节,而且大量减少了三角形数目。应用实例表明,算法效果良好。 Based on study of relationship between the average quadric error and the surface curvature, a variable resolution surface reconstruction algorithm was proposed. According to the user'sspecified threshold of average quadric error, a min-max box containing cloud points was split into octree cells of different sizes, in which the isosurface was extracted by using MC method. The cracks at interface cells of different resolution were patched by perpendicular projection, The proposed algorithm could reconstruct the rough region with smaller triangles, and the flat or smooth region with larger triangles, which could reduce the number of triangles greatly as well as recover the fine model details. The experimental results show that the algorithm is satisfying.
作者 熊邦书 魏江
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第18期4126-4129,4133,共5页 Journal of System Simulation
基金 江西省自然科学基金(0511067) 江西省教育厅科学技术研究项目(2006-162)。
关键词 变分辨率 二次误差准则 移动立方体法 八叉树 variable resolution quadric error metric marching cubes octree
  • 相关文献

参考文献9

  • 1Hoppe H, DeRose T, Duchamp T, et al. Surface Reconstruction from Unorganized Points [J]. Computer Graphics (S0097-8930), 1992, 26(2): 71-78.
  • 2Lewiner T, Lopes H, Vieira A W, et al. Efficient Implementation of Marching Cubes Cases with Topological Guarantees [J]. Journal of Graphics Tools (S1086-7651), 2003, 8(2): 1-15.
  • 3Zhang N, Hong W, Kaufman A. Dual Contouring with Topology-Preserving Simplification Using Enhanced Cell Representation [C]// Proceedings of IEEE Visualization'04, Washington, DC, USA: IEEE Computer Society, 2004:505-512.
  • 4Ho C C, Wu F C, Chuang B Y, et al. Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data |J]. Computer Graphics Forum (S0167-7055), 2005, 24(3): 537-545.
  • 5Liu Y J, Yuen M E Opeimized Triangle Mesh Reconstruction from Unstructured Points [J]. The Visual Computer (S0178-2789), 2003, 19(1): 23-37.
  • 6熊邦书,何明一,俞华璟.基于空间连通性的快速曲面重建算法[J].系统仿真学报,2005,17(1):75-78. 被引量:11
  • 7Garland M. Quadric-based Polygonal Surface Simplification [D].Pittsburgh: Carnegie Mellon University, 1999.
  • 8Shekhar R, Fayyad E, Yagel R, et al. Octree Based Decimation of Marching Cubes Surfaces [C]// Proceedings of the IEEE Visualization 96, Los Alamitos, CA, USA: IEEE Computer Society, 1996: 335-342.
  • 9熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65

二级参考文献14

  • 1Edelsbrunner H, Mucke E E Three-Dimensional alpha shapes [J].ACM Transactions on Graphics, 1994, 13 (1):43-72.
  • 2Amenta N, Bern M. Surface reconstruction by voronoi filtering [J].Discrete and Computational Geometry, 1999, 22(4): 481-504.
  • 3Gopi M, Krishnan S, Silva C. Surface reconstruction based on lower dimensional localized Delaunay triangulation [A]. Eurographics'00[C]. Interlaken, Switzerland: 2000, 467-478.
  • 4T.K.Dey, J.Giesen, J.Hudson. Delaunay based shape reconstruction from large data [A]. IEEE Symposium on Parallel and large-Data Visualization and Graphics [C]. San Diego, USA: 2001, 139-146.
  • 5Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points [A]. SIGGRAPH'92 Proceedings [C].Chicago,USA: 1992, 26(2):71-78.
  • 6Curless B, Levoy M. A volumetric method for building complex models from range images [A]. SIGGRAPH'96 Proceedings [C]. New Orleans, USA: 1996,303-312.
  • 7Kobbelt L E Botsch M, Schwanecke U, et al. Feature sensitive surface extraction from volume data [A]. SIGGRAPH'01 Proceedings [C].Los Angeles, USA: 2001,57-66.
  • 8Piegl L A, Tiller W. Algorithm for finding all k nearest neighbors [J].Computer-Aided Design, 2002,34(2): 167-172.
  • 9Kobbelt L P, Botsch M, Schwanecke U, et al. Feature sensitive surface extraction from volume data [A]. In:Computer Graphics Proceedings, Annual Conference Series, ACM, SIGGRAPH, Los Angeles, CA, 2001. 57~66
  • 10Goodsell. G. On finding p-th nearest neighbors of scattered points in two dimensions for small p [J]. Computer Aided Geometric Design, 2000,17(4): 387~ 392

共引文献74

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部