期刊文献+

基于蚁群算法的水下潜器全局路径规划技术研究 被引量:15

Research on Global Path Planning of Underwater Vehicle Based on Ant Colony Algorithm
下载PDF
导出
摘要 全局路径规划是水下潜器智能控制的关键技术之一,其任务是在已知障碍物的环境中按照某一最优指标寻找一条从起始点到目标点的无碰路径。文章使用蚁群算法对水下潜器三维空间全局路径规划问题进行了研究,讨论了三维空间的抽象环境建模方法,依据安全性、经济性和路径最短原则设计了算法适应值评价函数,综合利用迭代最优和全局最优信息设计了信息素更新规则,仿真结果验证了算法的正确性和有效性。 Global path planning is one of the key techniques of underwater vehicle's intelligent control system, whose purpose is to find a collision-free path from the source position to the destination position according to some optimization criteria. The ant colony algorithm is used when studying the global path planning for underwater vehicle in three-dimensional space. The methods for abstract modeling in three-dimensional space were described. In light of the rule of security, economy and the shortest path, the fitness evaluation function was designed while pheromone updating rules, which synthesized iteration-best information and global-best information, were given as well The simulation result proves the correctness and effectiveness of the algorithm designed.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第18期4174-4177,共4页 Journal of System Simulation
关键词 蚁群算法 水下潜器 全局路径规划 三维空间 ant colony algorithm underwater vehicle global path planning three-dimensional space
  • 相关文献

参考文献5

  • 1张京娟.基于遗传算法的水下潜器自主导航规划技术研究[D].哈尔滨:哈尔滨工程大学自动化学院,2003.
  • 2M Dorigo, V Maniezzo, A Colorni. Ant System: Optimization by a Colony of Cooperating Agent [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B (S1083-4419), 1996, 26(1): 29-41.
  • 3段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J].自然杂志,2006,28(2):102-105. 被引量:31
  • 4吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 5Luca Maria Gambardella, M Dorigo. Solving Symmetric and Asymmetric TSPs by Ant Colonies[C]//Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway: IEEE Press, 1996: 622-627.

二级参考文献14

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2COLORNI A,DORIGO M,MANIEZZO V,et al.Distributed optimization by ant colonies[C].Proceedings of the 1st European Conference on Artificial Life,1991:134-142.
  • 3DORIGO M.Optimization,learning and natural algorithms[D].Ph.D.Thesis,Department of Electronics,Politecnico diMilano,Italy,1992.
  • 4DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[C].IEEE Transaction on Systems,Man,and Cybernetics-Part B,1996,26 (1):29-1.
  • 5BONABEAU E,DORIGO M,THERAULAZ G.Inspiration for optimization from social insect behavior[J].Nature,2000,406 (6):39-42.
  • 6MICHAEL J B K,JEAN-BERNARD B,LAURENT K.Ant-like task and recruitment in cooperative robots[J].Nature,2000,406 (31):992-995.
  • 7GUTJAHR W J A.generalized convergence result for the graph based ant system[R].Technical Report 99-09,Dept.of Statistics and Decision Support Systems,University of Vienna,Austria,1999.
  • 8GUTJAHR W J.A graph-based ant system and its convergence[J].Future Generation Computer Systems,2000,16(8):873-888.
  • 9ISAACS J C,WATKINS R K,FOO S Y.Evolving ant colony systems in hardware for random number generation[C].Proceedings of the 2002 Congress on Evolutionary Computation,2002:1450-1455.
  • 10SCHEUERMANN B,SO K,GUNTSCH M,et al.FPGA implementation of population-based ant colony optimization[J].Applied Soft Computing,2004,4(4):303-322.

共引文献337

同被引文献190

引证文献15

二级引证文献467

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部