期刊文献+

Functional Variable Separation for Extended Nonlinear Elliptic Equations 被引量:4

Functional Variable Separation for Extended Nonlinear Elliptic Equations
下载PDF
导出
摘要 This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.
作者 ZHANG Shun-Li
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期385-390,共6页 理论物理通讯(英文版)
基金 The project supported by National Natural Science Foundation of China under Grant No. 10447007 and the Natural Science Foundation of Shaanxi Province of China under Grant No. 2005A13
关键词 nonlinear elliptic equation functional variable separation generalized conditional symmetry 非线性椭圆方程 泛函变量分离 广义对称性 扩展
  • 相关文献

参考文献58

  • 1P.J. Olver, Application of Lie Groups to Differential Equation, 2nd ed., Graduate Texts Math. 107 Springer,New York (1993)
  • 2G.W. Bluman and S. Kumei, Symmettles and Differential Equation, Appl. Math. Sci. 81,Springer, Berlin (1989)
  • 3G.W. Bluman and J.D. Cole, J,Math. Mech. 18 (1969) 1025.
  • 4W. Miller and L.A. Rubel, J. Phys. A: Math. Gen. 26(1993) 1901
  • 5A.M. Grundland and E. Infeld, J. Math.Phys. 33 (1992) 2498
  • 6R.Z. Zhdanov, J. Phys. A: Math.Gen. 27 (1994) L291.
  • 7W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading, MA (1977)
  • 8E.G. Kalnins and W. Miller, J. Math. Phys. 26 (1985)1560
  • 9E.G. Kalnins and W. Miller, J. Math. Phys. 26(1985) 2168.
  • 10R.Z. Zhdanov, J. Phys. A: 27 (1994) L291

同被引文献58

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部