期刊文献+

Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime 被引量:1

Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime
下载PDF
导出
摘要 Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期465-468,共4页 理论物理通讯(英文版)
基金 The project supported by the Natural Science Foundation of Shanxi Province under Grant No. 2006011012 tCorresponding author,
关键词 generalized uncertainty principle black hole entropy area theorem higher-dimensional spacetime 广义不确定性原理 黑洞熵 区域理论 多维空间
  • 相关文献

参考文献21

  • 1J.D.Bekenstein,Phys.Rev.D 7 (1973) 2333.
  • 2J.D.Bekenstein,Phys.Rev.D 9 (1974) 3292.
  • 3S.W.Hawking,Nature (London) 248 (1974) 30; Commun.Math.Phys.43 (1975) 199.
  • 4Y.J.Wang,Black Hole Physics,Hunan Normal University Press,Changsha (2000) p.263 (in Chinese).
  • 5A.J.M.Medved and E.C.Vagenas,Phys.Rev.D 70(2004) 124021.
  • 6A.Chatterjee and P.Majumdar,Phys.Rev.Lett.92(2004) 141301.
  • 7R.K.Kaul and P.Majumdar,Phys.Rev.Lett.84 (2000)5255.
  • 8G.A.Camellia,M.Arzano,and A.Procaccini,Phys.Rev.D 70 (2004) 107501.
  • 9A.Chatterjee and P.Majumdar,Phys.Rev.D 71 (2005)024003.
  • 10Y.S.Myung,Phys.Lett.B 579 (2004) 205.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部