期刊文献+

Global Pressure of One-Dimensional Polydisperse Granular Gases Driven by Gaussian White Noise

Global Pressure of One-Dimensional Polydisperse Granular Gases Driven by Gaussian White Noise
下载PDF
导出
摘要 We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期481-486,共6页 理论物理通讯(英文版)
基金 The project supported by National Natural Science Foundation of China under Grant Nos. 10675048 and 10604017 and Natural Science Foundation of Xianning College under Grant No. KZ0627
关键词 global pressure restitution coefficient e fractal dimension D Gaussian white noise polydisperse granular gases 整体压力 高斯白色噪音 分散颗粒烟气 微粒物
  • 相关文献

参考文献18

  • 1T.Poschel and S.Luding,Granular Gases,Lectures Notes in Physics,Vol.564,Springer,Berlin (2001).
  • 2S.Chapman and T.G.Cowling,The Mathematical Theory of Non-uniform Gases,3rd ed.,Cambridge University Press,Cambridge (1990).
  • 3V.Garzó and J.W.Dufty,Phys.Rev.E 59 (1999) 5895.
  • 4W.A.M.Morgado and E.R.Mucciolo,Physica A 311(2002) 150.
  • 5A.Puglisi,V.Loreto,U.Marini Bettolo Marconi,A.Petri,and A.Vulpiani,Phys.Rev.Lett.81 (1998) 3848.
  • 6F.Cecconi,F.Diotallevi,U.Marini Bettolo Marconi,and A.Puglisi,J.Chem.Phys.120 (2004) 35.
  • 7D.M.Zhang,Z.Zhang,and B.M.Yu,Commun.Theor.Phys.(Beijing,China) 31 (1999) 373.
  • 8D.M.Zhang,Y.J.Lei,and B.M.Yu,Commun.Theor.Phys.(Beijing,China) 37 (2002) 231.
  • 9D.M.Zhang,Y.J.Lei,G.J.Pan,and B.M.Yu,Chin.Phys.Lett.20 (2003) 2221.
  • 10D.M.Zhang,R.Li,X.Y.Su,G.J.Pan,and B.M.Yu,J.Phys.A:Math.Gen.38 (2005) 8861.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部