期刊文献+

基于粒子群优化算法的过程模型辨识 被引量:7

Parameter identification of process model based on PSO
下载PDF
导出
摘要 参数辨识是过程建模的基础,提出了一种基于粒子群优化(PSO)算法的模型参数辨识方法,将过程模型的每个参数作为粒子群体中的一个粒子,利用粒子群体在参数空间进行高效并行的搜索来获得过程模型的最佳参数值,可有效提高参数辨识的精度和效率。对火电厂热工过程进行参数辨识的仿真结果表明,利用PSO算法辨识过程模型参数,无论过程模型是否是时滞对象,该辨识方法对过程模型的阶次不敏感,对于不同的输入信号,均能得到满意的辨识精度和效率,因此得到了较为精确的过程模型,模型输出与实际输出基本一致。 Parameter identification is the base of process modeling,a PSO(Particle Swarm Optimization ) -based model parameter identification method is put forward. By taking every parameter of process model as particle of the swarm and applying PSO algorithm to search optimal parameters of the process model concurrently and efficiently in the parameter space,the precision and efficiency of parameter identification are improved effectively. Simulation results for power plant thermal process indicate that, for model with or without time lag,the method is not sensitive to the order of the model,and obtains satisfactory identification precision and efficiency for different input signals. The precise process model is thus built and model outputs coincide with actual outputs.
作者 徐志成
出处 《电力自动化设备》 EI CSCD 北大核心 2007年第9期75-78,共4页 Electric Power Automation Equipment
关键词 粒子群优化 模型辨识 热工过程 particle swarm optimization model identification thermal process
  • 相关文献

参考文献11

  • 1GOLUB G H,van LOAN C F.An analysis of the total least -squares problem[J].SIAM J Numer Anal,1980,17(6):883-893.
  • 2FELSENSTEIN J.Evolutionary trees from DNA sequences:a maximum likelihood approach[J].J Mol Evol,1981,17(1):368-376.
  • 3DAVIS L.Handbook of genetic algorithms[M].New York:Van Nostrand Reinhold,1991.
  • 4姜波,汪秉文.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,2000,17(1):150-152. 被引量:61
  • 5KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks.Perth:IEEE Press,1995:1942-1948.
  • 6EBERHART R,SHI Yu-hui.Tracking and optimizing dynamic systems with particle swarms[C]//Proc IEEE Int Conf on Evolutionary Computation.Hawaii:IEEE Press,2001:94-100.
  • 7RAY T,LIEW K M.A swarm with effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C]//Proc IEEE Int Conf on Evolutionary Computation.Seoul:IEEE Press,2001:75-80.
  • 8PARSOPOULOS K E,VRAHATIS M N.Recent approaches to global optimzation problems through particle swarm optimization[J].Natural Computing,2002,2 (1):235-306.
  • 9MILLONAS M M.Swarms phase transition and collective intelligence[M].MA:Addison Wesley,1994.
  • 10SHI Yu-hui,EBERHART R.A modified particle swarm optimizer[C]//Proc IEEE.Int Conf on Evolutionary Computation.Anchorage:IEEE Press,1997:303-308.

二级参考文献9

共引文献124

同被引文献72

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部