摘要
This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.
This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.
基金
the Natural Science Foundation of Zhejiang Province(No.Y105480)
the Science Foundation of Zhejiang Provincial Commission of Education(No.20051414)