期刊文献+

基于隶属度分离测度SVM决策树层次结构设计方法 被引量:1

Method of designing hierarchical structure of SVM decision tree based on separating measure with degree of membership
下载PDF
导出
摘要 从样本的类空间分布和随机测试样本对每个类别的隶属度两方面考虑,对现有的分离测度进行了改进,并给出了一种基于隶属度分离测度的SVM决策树多类分类算法。实验表明,对于随机测试样本属于每个类别的概率均不相同的多类分类问题,基于隶属度分离测度的SVM决策树在与传统的SVM决策树有着基本相同的分类精度情况下,具有更快的分类速度。 This paper proposed a new separating measure, and designed the hierarchical structure of SVM decision tree based on this new separating measure. The experimental results show that when the random testing sample has different degree of membership to different classes, this SVM decision tree algorithm with the new separating measure speeds up the separation under the same separation ability.
作者 薛欣 贺国平
出处 《计算机应用研究》 CSCD 北大核心 2007年第9期162-163,167,共3页 Application Research of Computers
基金 国家自然科学基金(10571109)
关键词 层次结构 决策树 支持向量机 hierarchical structure multi-class classification support vector machine
  • 相关文献

参考文献9

  • 1VAPNIK V N.The nature of statistical learning theory[M].New York:Springer,1999.
  • 2WESTON J,WATKINS C.Support vector machines for multi-class pattern recognition[C]//Proc of the 7th European Symposium on Artificial Neural Networks.Brussels:[s.n.],1999:219-224.
  • 3KREBEL U.Pairwise classification and support vector machines[C]//Advance in Kernel Methods.Cambridge:MIT Press,1999:255-268.
  • 4DIETTERICH T G,BAKIRI G.Solving multi-class learning problem via error-correcting output codes[J].Journal of Artificial Intelligent Research,1995(2):263-286.
  • 5PLATT J C,CRISTIANINI N,TAYLOR J S.Large margin DGAs for multi-class classification advances in neural information[C]//Advances in Neural Information Processing System.Cambridge:MIT Press,2000:547-553.
  • 6GUO G D,LI S E,CHAN K.Face recognition by support vector machines[C]//Proc of the International Conferences on Automatic Face and Gesture Recognition.2000:196-201.
  • 7TAKAHASHI F,ABE S.Decision-tree-based multi-class support vector machines[C]//Proc of the 9th International Conference on Neural InformationProcessing.Singapore:IEEE Press,2002:1419-1422.
  • 8史朝辉,王晓丹,赵士敏,杨建勋.改进的SVM决策树分类算法[J].空军工程大学学报(自然科学版),2006,7(2):32-35. 被引量:10
  • 9赵晖,荣莉莉,李晓.一种设计层次支持向量机多类分类器的新方法[J].计算机应用研究,2006,23(6):34-37. 被引量:20

二级参考文献20

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 2Bennett K P,Blue J A.A Support Vector Machine Approach to Decision Trees[A].Proceedings of IJCNN'98[C].Anchorage Alaska:IEEE Press,1998.2396-2401.
  • 3Fumitake Takahashi,Shigeo Abe.Decision-Tree-Based Multi-Class Support Vector Machines[A].Proceeding of ICONIP'02[C],Singapore:IEEE Press,2002.1419-1422.
  • 4Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 5Bahlmann C,Hassdonk B,Burkhardt H.On-line Handwriting Recog-nition with Support Vector Machines:A Kernel Approach[C].Ontario:Proc.of the 8th Int.Workshop on Frontiers in Handwriting Recognition,2002.49-54.
  • 6Jonsson K,Kittler J,Matas Y P.Support Vector Machines for Face Authentication[J].Journal of Image and Vision Computing,2002,20(2):369-375.
  • 7Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C].Proc.of the 10th European Conf.Machine Learning,1999.137-142.
  • 8Ma C,Randolph M A,Drish J.A Support Vector Machines-based Rejection Technique for Speech Recognition[C].Proceedings of IEEE Int.Conference on Acoustics,Speech,and Signal Processing,2001.381-384.
  • 9Weston J,Watkins C.Multi-class Support Vector Machines[C].Brussels:Proceedings of ESANN'99,1999.233-265.
  • 10Bottou L,Cortes C,Denker J,et al.Comparison of Classifier Met-hods:A Case Study in Handwriting Digit Recognition[C].Proc.of Int.Conf.Pattern Recognition,1994.77-87.

共引文献26

同被引文献8

  • 1Millan del R J. On the need for on-line learning in brain-computer interfaces[A].Budapest:Institute of Electrical and Electronics Engineers Incorporation Publisher,2004.2877-2882.
  • 2WILSON J A,MELLINGER J,SCHALK G. A procedure for measuring latencies in brain-computer interfaces[J].IEEE Transactions on Biomedical Engineering,2010,(07):1785-1797.
  • 3Vapnik V N.统计学习理论的本质[M]北京:清华大学出版社,2000.
  • 4YANG B H,YANA G ZH,YAN R G,et a1. Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition[J].Medical Engineering &-Physics,2007,(01):48-53.
  • 5TANG Yah,TANG Jing-tian,GONG An-dong. Multi-class EEG classification for brain computer interface based on CSP[A].Sanya:Institute of Electrical and Electronics Engineers Computer Society Press,2008.469-472.
  • 6黄玲,张爱华.改进的决策树SVM在脑电识别中的应用[J].计算机工程与设计,2010,31(2):382-384. 被引量:2
  • 7万柏坤,刘延刚,明东,孙长城,綦宏志,张广举,程龙龙.基于脑电特征的多模式想象动作识别[J].天津大学学报,2010,43(10):895-900. 被引量:13
  • 8赵志刚,吕慧显,李玉景,李京.一种基于聚类思想的SVM多类分类方法[J].青岛理工大学学报,2011,32(1):73-76. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部