期刊文献+

非稳定不可压缩流动模拟的改进有限元数值方法(英文) 被引量:1

An improved finite element technique for the simulation of unsteady incompressible flows
下载PDF
导出
摘要 泰勒-伽辽金有限元法在对流扩散问题的数值模拟中存在数值耗散和伪振荡等问题.本文提出改进的二阶和三阶欧拉-泰勒-伽辽金有限元法,求解了粘性不可压缩流动的Navier-Stokes方程.为克服由不可压缩条件引起的压力场振荡问题,引入压力修正法和泰勒-胡德单元.对方腔拖曳流动进行了数值模拟,以验证改进后算法的性能.最后,分析了改进后算法的精度和计算效率. The application of Taylor-Galerkin schemes to mixed problems describing transport by both convection and diffusion appears to be much more difficult. In the present paper, the modified versions of the second and third order Euler-Taylor-Galerkin finite element methods were developed for numerical solution of viscous incompressible Navier-Stokes equations. Pressure correction method and Taylor-Hood element were introduced to overcome the numerical difficulties arising from the fluid incompressibility. In order to confirm the properties of the methods, numerical simulation of lid-driven cavity flow problem with different Reynolds numbers was presented. Finally, accuracy and computational efficiency of the schemes were discussed.
出处 《空间结构》 CSCD 北大核心 2007年第3期57-64,共8页 Spatial Structures
基金 Project supported by National Natural Science Foundation of China(10572091,50278054).
关键词 泰勒-伽辽金有限元法 粘性不可压缩流动 压力修正法 方腔拖曳流动 Taylor-Galerkin scheme viscous incompressible flow pressure correction method lid-driven cavity flow problem
  • 相关文献

参考文献17

  • 1CHUNG T J. Computational Fluid Dynamics[M]. Cambridge: Cambridge University Press, 2002.
  • 2BROOKS A, HUGHES T J R. Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3): 199-259.
  • 3DONEA J. A Taylor-Galerkin method for convective transport problems [J]. International Journal for Numerical Methods in Engineering, 1984, 20: 101-120.
  • 4MORTON K W, PARROTT A K. Generalized Galerkin methods for first order hyperbolic equations [J]. Journal of Computational Physics, 1980, 36 : 249-270.
  • 5BATHE Klaus-Juirgen, ZHANG Hou. A flowcondition-based interpolation finite element procedure for incompressible fluid flows [J]. Computers &. Structures, 2002, 80:1267-1277.
  • 6DONEA J, SELMIN V, QUARTAPELLE L. Recent developments of the Taylor-Galerkin method for the numerical solution of hyperbolic problems [J].Numerical Methods for Fluid Dynamics, 1988, 17:171-185.
  • 7YOUN S K, HANS G. An accurate higherorder Taylor-Galerkin method for structural dynamics [J]. Computers & Structures, 1993, 48:695-702.
  • 8YOUN S K, PARK S H. A new direct higher-order Taylor-Galerkin finite element method [J]. Computers & Structures, 1995, 56:651-656.
  • 9DONEA J, ROIG B, Huerta A. High-order accurate time-stepping schemes for convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 182: 249-275.
  • 10DONEA J, HUERTA A. Finite Element Methods for Flow Problems[M]. Chiehester: John Wiley & Sons, 2003.

同被引文献35

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部