摘要
设A∈Cn×n是2-循环相容次序阵,其Jacobi阵J的非零特征值均为纯虚数.记α=ρ(J).本文证明了A的AOR迭代阵Lr,ω(约定ω>0,r≠0)收敛当且仅当参数ω,r满足条件0<ω<21+α2,ω+ωα-22<r<12ω+(2ω-αω2)2,r≠0,或等价地,r≥rb,0<ω<2+rα2-α1+αr22α2+4r-4;rb≥r>-α22,r≠0,0<ω<21++rαα22,其中rb=1+21+α2.这一结果纠正了薛秋芳文给出的相应结果,并指出了其中的3个问题.
Suppose A∈C^n×n is an 2 - cyclic consistently ordered matrix and its non-zero eigenvalues of Jacobi matrix J has only pure imaginary. Set α=ρ(J). In this paper we prove that the AOR iteration matrix Br,ω,(with ω 〉0 and r≠O) of A converges iff 0〈ω〈21+α2,ω+ωα-22-α22,r≠0 or equivalently,{r≥rb,0〈ω〈2+rα^2-α√r^2α^2+4r-4/ 1+α^2 rb≥r〉-2/α^2,r≠0,0〈ω〈2+rα^2/1+α^2,其中rb=1/1+√1+α2.This result corrects the corresponding one obtained by Xue.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2007年第3期1-5,共5页
Journal of Nanjing Normal University(Natural Science Edition)
基金
江苏省自然科学基金重点项目(BK2006725)
关键词
2-循环相容次序阵
AOR迭代阵
收敛域
最优参数
渐近收敛因子
2-cyclic consistently ordered matrix, AOR iteration matrix, convergence region, optimal parameter, asymptotic convergence factor