期刊文献+

2-循环相容次序阵的AOR迭代的收敛域

Convergence Region for the AOR Iteration Matrix of an 2-Cyclic Consistently Ordered Matrix
下载PDF
导出
摘要 设A∈Cn×n是2-循环相容次序阵,其Jacobi阵J的非零特征值均为纯虚数.记α=ρ(J).本文证明了A的AOR迭代阵Lr,ω(约定ω>0,r≠0)收敛当且仅当参数ω,r满足条件0<ω<21+α2,ω+ωα-22<r<12ω+(2ω-αω2)2,r≠0,或等价地,r≥rb,0<ω<2+rα2-α1+αr22α2+4r-4;rb≥r>-α22,r≠0,0<ω<21++rαα22,其中rb=1+21+α2.这一结果纠正了薛秋芳文给出的相应结果,并指出了其中的3个问题. Suppose A∈C^n×n is an 2 - cyclic consistently ordered matrix and its non-zero eigenvalues of Jacobi matrix J has only pure imaginary. Set α=ρ(J). In this paper we prove that the AOR iteration matrix Br,ω,(with ω 〉0 and r≠O) of A converges iff 0〈ω〈21+α2,ω+ωα-22-α22,r≠0 or equivalently,{r≥rb,0〈ω〈2+rα^2-α√r^2α^2+4r-4/ 1+α^2 rb≥r〉-2/α^2,r≠0,0〈ω〈2+rα^2/1+α^2,其中rb=1/1+√1+α2.This result corrects the corresponding one obtained by Xue.
作者 陈永林
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期1-5,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 江苏省自然科学基金重点项目(BK2006725)
关键词 2-循环相容次序阵 AOR迭代阵 收敛域 最优参数 渐近收敛因子 2-cyclic consistently ordered matrix, AOR iteration matrix, convergence region, optimal parameter, asymptotic convergence factor
  • 相关文献

参考文献7

  • 1Hadjidimos A,Plemmons R J.Optimal p-cyclic SOR[J].Numer Math,1994,67:475-490.
  • 2薛秋芳.一类矩阵的AOR迭代收敛性分析及其与SOR迭代的比较[J].高等学校计算数学学报,2006,28(1):39-49. 被引量:4
  • 3陈永林.亏秩线性最小二乘问题的AOR迭代法的半收敛性[J].南京师大学报(自然科学版),2005,28(4):1-7. 被引量:3
  • 4Markham T L,Neumann M,Plemmons R J.Convergence of a direct-iterative method for large-scale least squares problems[J].Linear Algebra Appl,1985,69:155-167.
  • 5Miller V A,Neumann M.Successive overrelaxation methods for solving the rank deficient linear least squares problem[J].Linear Algebra Appl,1987,88/89:533-557.
  • 6Chen X,Chen Y L.A necessary and sufficient condition for semiconvergence and optimal parameters of the SSOR method for solving the rank deficient linear least squares problem[J].Appl Math Comput,2006,182:1 108-1 126.
  • 7Tian Hong-jun.Accelerated overrelaxation methods for rank deficient linear systems[J].Appl Math Comput,2003,140(2/3):39-49.

二级参考文献15

  • 1陈永林.约束奇异半正定线性方程组的迭代解法[J].南京师大学报(自然科学版),2005,28(3):1-6. 被引量:2
  • 2Ben-Israel A, Greville T N E. Generalized Inverses : Theory and Applications [ M ]. 2nd ed. New York : Springer Verlag,2003.
  • 3Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[ M]. New York: Academic Press, 1979.
  • 4Hadjidimos A. Accelerated overrelaxation method[ J]. Math Comput, 1978, 32:149-157.
  • 5Miller V A, Neumann M. Successive overrelaxation methods for solving the rank deficient linear least squares problem [ J ].Linear Algebra Appl, 1987, 88/89:533-557.
  • 6Tian Hongjiong. Accelerate overrelaxation methods for rank deficient linear systems [ J ]. Appl Math Comput, 2003, 140(2-3) :485-499.
  • 7Varga R S. Matrix Iterative Analysis[ M]. 2nd ed. Berlin: Springer-Verlag, 2000.
  • 8Young D M. Iterative Solution of Large Linear Systems [ M ]. New York : Academic Press, 1971.
  • 9Varga tt S. Matrix iterative analysis. Englevood Cliffs, New. Jersy: Prentice-Hall,Inc,1962.
  • 10Young D M. Iterative solution of.large linear system. New York and London:Academic Press,1971.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部