期刊文献+

线性系统极点正规配置问题

Pole Normal Assignment for Linear Control Systems
下载PDF
导出
摘要 基于正规矩阵特征值对其元素变化的不敏感性,讨论线性系统极点的正规配置问题,即设计状态反馈控制律,将闭环控制系统极点配置到期望位置的同时使闭环状态矩阵为正规矩阵,从而达到增强控制系统的鲁棒性的目的。对于线性时不变系统,给出期望极点集可正规配置的充分必要条件及反馈控制律的一般表达式,并结合示例给出算法。 The eigenvalues of a normal matrix are not sensitive to its elements perturbation. Based on the fact, the pole normal assignment problem for linear control systems is discussed. The aim is to find a state feedback control law. When the closed-loop system has desired poles and the closed-loop system matrix is a normal matrix, the robustness of the control system is enhanced. For linear constant systems, a necessary and sufficient condition is given to normal assignment of the desired poles. When the condition holds, a unified expression of the state feedback control laws is showed. An example is given for illustration of the proposed algorithm.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期84-87,共4页 Journal of Chongqing University
基金 重庆市科委自然科学基金资助项目(102075120050121) 福建省教育厅科研基金资助项目(JA04169)
关键词 线性时不变系统 正规矩阵 极点配置 极点正规配置 鲁棒性 linear constant systems normal matrix pole assignment pole normal assignment robustness
  • 相关文献

参考文献10

  • 1FALLSIDE F.Control system design by pole-zero assignment[M].New York:Academic,1977.
  • 2BHATTACHARYYA S P,DE SOUZA E.Pole assignment via sylvester's equations[J].Systems Cont Lett,1982,1(4):261-263.
  • 3SANTOS-MENDES R,AGUILAR-MARTIN J.Robust pole placement design[J].Int J Control,1989,50(1):113-128.
  • 4SUN J G.Perturbation analysis of the pole assignment problem[J].SIAM J Matrix Anal Appl,1996,17:313-331.
  • 5MEHRMANN V,XU H.Numerical methods in control[J].J Comp & Appl Math,2000,123:371-394.
  • 6NURGES U.Robust pole assignment via reflection coefficients of polynomials[J].Automatica,2006,42:1223-1230.
  • 7WILKINSON J H.The algebraic eigenvalue problem[M].London:Clarendon Press,1965.
  • 8张霖,吴麒,高黛陵.设计多变量鲁棒控制系统的正规矩阵方法[J].自动化学报,1994,20(2):138-145. 被引量:9
  • 9易宜连.鲁棒控制系统的正规矩阵设计法[J].华东交通大学学报,1996,13(4):12-15. 被引量:3
  • 10BEN-ISRAEL A,GREVILE TNE.Generalized inverse:theory and applications[M].New York:Wiley,1974.

二级参考文献4

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部