期刊文献+

一类具扩散的染病捕食者与被捕食模型

A diffusive predator-prey model with disease in the predator
下载PDF
导出
摘要 对一类具扩散的染病捕食者与被捕食模型进行分析.通过线性化和特征值的方法讨论系统平衡点的局部稳定性,用Lyapunov函数方法结合局部稳定性的结论给出了系统平衡点的全局稳定性. In this paper, a predator-prey model with disease in the predator and diffusion is discussed. The local stabilities are investigated by linearization and eigenvalue. The global asymptotical stabilities are given using the method of Lyapunov functions combining with the local stabilities.
作者 甘文珍
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2007年第3期11-14,共4页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(05KJB110154)
关键词 捕食与被捕食模型 染病捕食者 扩散 全局稳定性 predator-prey model predator with disease diffusion global stability
  • 相关文献

参考文献8

  • 1KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemic [J]. Proc Roy Soc, 1927, 115(A): 700-721.
  • 2XIAO Yan-ni, BOSCH D V F. The dynamics of an eco-epidemic model with biological control[J]. Ecological Modelling, 2003, 168(1): 203-214.
  • 3张群英,周桦,侯燕,林支桂.具有Michaelis-Menten响应函数的3种群捕食模型[J].扬州大学学报(自然科学版),2004,7(2):6-9. 被引量:4
  • 4周桦,甘文珍,林支桂.一类具时滞和扩散的传染病模型[J].扬州大学学报(自然科学版),2005,8(2):4-7. 被引量:3
  • 5KIM I K, LIN Zhi-gui. A degenerate parabolic system with self-diffusion for a mutualistic model in ecology [J]. Nonlinear Anal: Real World Appl, 2006, 7(4): 597-609.
  • 6WANG Ming-xin. Non-constant positive steady-state of the Sel'kov model [J]. J Diff Eqs, 2003, 190 (2): 600-620.
  • 7WU .Jian-hong. Theory and applications of partial functional-differential equations [M]// Applied Mathematical Sciences 119. New York: Springer-Verlag, 1996: 71-72.
  • 8BROWN K J, DUNNE P C, GARDNER R A. A semilinear parabolic system arising in the theory of superconductivity [J]. J Diff Eqs, 1981, 40(2) : 232-252.

二级参考文献13

  • 1徐瑞,陈兰荪.PERSISTENCE AND GLOBAL STABILITY FOR A THREE-SPECIES RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH TIME DELAYS IN TWO-PATCH ENVIRONMENTS[J].Acta Mathematica Scientia,2002,22(4):533-541. 被引量:12
  • 2ANDERSON R M, MAY R M. Population biology of infections diseases [J]. Nature, 1979, 280(2) : 361~367.
  • 3HETHCOTE H W. Qualitative analysis of communicable disease model [ J ]. Math Biosci, 1976, 28(2): 335~356.
  • 4PIYAWONG W, TWIZELL E H, GUMEL A B. An unconditionally convergent finite-difference scheme for the SIR model [ J ]. Appled Math Comp, 2003, 146(2) : 611~625.
  • 5COOKE K L. Stability analysis for a vector disease model [ J ]. Rocky Mount J Math, 1979, 7(2), 253~263.
  • 6BERETTA E, HARA T, MAW B, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay [ J ]. Nonlinear Anal, 2001, 47(6): 4107~4115.
  • 7LADYZENSKAJA O A, SOLONNIKOV V A, URAL'CEVA N N. Linear and quasilinear equations of parabolic type [ M ]. Providence, RI: Amer Math Soc, 1968.
  • 8PANG P Y H, WANG M X. Straegy and stationary pattern in a three-species predator-prey model [ J ]. J Diff Equ, 2004, 200(2): 245~273.
  • 9WU J H. Theory and applications of partial functional-differential equations. Applied mathematical science 119 [ M ]. New York : Springer-Verlag, 1996.
  • 10PAO C V. Convergence of solutions of reaction-diffusion systems with time delays [ J ]. Nonlinear Anal, 2002,48 (3) : 349 ~ 362.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部