期刊文献+

Banach空间中渐近非扩张型半群殆轨道的遍历定理 被引量:4

Ergodic theorem of the almost-orbits for asymptotically nonexpansive type semigroups in Banach spaces
下载PDF
导出
摘要 X是一Banach空间,(X,τ)是局部凸线性拓扑空间,C是X上的τ-序列紧凸集,S是C上的Γ类渐近非扩张型半群,在一致τ-Opial条件下给出了半群S的殆轨道u的遍历定理. Let X be a Banach space, (X,τ) be a locally convex linear topological space, C a τ-sequence compact convex subset of X, and S an asymptotically nonexpansive type semigroups from C onto itself, this paper gives the ergodic theorem of the almost-orbits for asymptotically nonexpansive type semigroups in Banach space X.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2007年第3期19-21,24,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10571150)
关键词 BANACH空间 渐近非扩张型半群 τ-收敛 遍历定理 Banach space asymptotically nonexpansive type semigroups τ-convergence ergodic theorem
  • 相关文献

参考文献9

  • 1BAILLON J B. Un theoreme de type ergodique les contraction non lineaires dans un espace de Hilbert [J]. C R Acad Sci Ser A-B, 1975, 280.. 1511-1514.
  • 2ISAO M, KOHAYASI K. On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach space [J]. Nonlinear Anal, 1982, 6(3): 349-369.
  • 3SEYIT T, OZLEM G. Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space [J]. J Math Anal Appl, 2007, 329(2): 759-765.
  • 4TAN K K, XU Hong-kun. Asymptotic behavior of almost-orbits in Hilbert space [J]. Proc Amer Math Soc, 1993, 2(3): 385-393.
  • 5LI Gang, MA Ji-pu. Ergodic theory of commutative semigroups of non-Lipschitzian semigroups in Banach space [J]. Acta Math Sin: Chin, 1997, 40(2): 191-201.
  • 6LI Gang, KIM J K. Nonlinear ergodic theorems for general curves defined on general semigroups [J]. Nonlinear Anal, 2003, 29(2): 231-246.
  • 7DAY M M. Amenable semigroups [J]. Illinois J Math, 1957, 1(4): 547-551.
  • 8BRUCK R E. On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set [J]. Isreal J Math, 1978, 29(1): 1-17.
  • 9陈玉会,李刚.τ-拓扑下的不动点定理[J].扬州大学学报(自然科学版),2006,9(1):15-17. 被引量:2

二级参考文献9

  • 1GOEBEL K,KIRK W.A fixed point theorem for asymptotically nonexpansive mappings[J].Proc Amer Math Soc,1972,35:171-174.
  • 2XU Hong-kun.Existence and convergence for fixed points of mappings of asymptotically nonpansive type[J].Nonlinear Anal,1991,16:1139-1146.
  • 3LIM T C,XU Hong-kun.Fixed point theorems for asymptotically nonexpansive mappings[J].Nonlinear Anal TMA,1994,22:1345-1355.
  • 4BRUCK R,KUCZUMOW T,REICH S.Convergence of iterates of asymptotically nonexpansive mappings in Banach space with the uniform Opial property[J].Nonlinear Anal TMA,1995,21:926-946.
  • 5GARCIA-FALSET J,SIMS B,SMYTH M A.The demiclosedness principle for mappings of asymptotically nonexpansive type[J].Houston J Math,1996,22:101-108.
  • 6KIM T H,XU Hong-kun.Remark on asymptotically nonexpansive mappings[J].Nonlinear Anal TMA,2000,41:405-415.
  • 7LI Gang,SIMS B.Fixed point theorems for mappings of asymptotically nonexpansive type[J].Nonlinear Anal TMA,2002,50:1085-1091.
  • 8顾文颖,李刚.正规结构与不动点定理[J].扬州大学学报(自然科学版),2003,6(4):4-7. 被引量:1
  • 9曾六川.Banach空间中带误差的修改的Ishikawa迭代程序[J].数学学报(中文版),2004,47(2):219-228. 被引量:16

共引文献1

同被引文献16

  • 1陈玉会,李刚.τ-拓扑下的不动点定理[J].扬州大学学报(自然科学版),2006,9(1):15-17. 被引量:2
  • 2Li G, Kim J K. Nonlinear ergodic theorems for general curves defined on general semigroups [ J ]. Nonlinear Analysis, 2003,55( 1 ) :1 - 14.
  • 3Lin P K, Tan K K, Xu H K. Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings [ J ]. Nonlinear Analysis, Theory, Methods & Applications, 1995,24( 6 ) : 929 - 946.
  • 4Day M M. Amenable semigroups [ J ]. Illinois Journal of Mathematics, 1957,1( 1 ) : 547 -551.
  • 5Bruck R E. On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak w-limit set [ J ]. Isreal Journal of Mathematics, 1978, 29(1): 1-17.
  • 6Baillon J B. Un theoreme de type ergodique les contraction non lineaires dans un espace de Hilbert [J]. C R Academy of Sciences, Series A-B, 1975, 280( 1 ) : 1511 - 1514.
  • 7Isao M, Kohayasi K. On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Ba- nach space [ J ]. Nonlinear Analysis, Theory, Methods & Applications, 1982,6 ( 4 ) : 349 - 365.
  • 8Seyit T, Ozlem G. Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space [ J ]. Journal of Mathematical Analysis and Applications, 2007, 329 ( 1 ) : 759 - 765.
  • 9Nishium K. Asymptotic behavior of almost-orbits of asymptotically nonexpansive semigroups in Banach spaces [ J ]. Journal of Nonlinear and Convex Analysis, 2000,1 ( 1 ) :95 - 105.
  • 10Li G, Kim J K. Nonlinear ergodic theorems for commutative semigroups of non-lipschitzian mappings in Banach spaces [ J ]. Houston Journal of Mathematics, 2003, 29 ( 1 ) :231 - 246.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部