期刊文献+

基于误差反向传播神经网络的胃癌细胞识别研究 被引量:2

Research on Recognizing Gastric Cancer Cell Based on Back Propagation Neural Network
下载PDF
导出
摘要 目的探讨误差反向传播(backpro pagation,BP)神经网络在胃癌细胞识别中的应用价值。方法在308例胃切除病例的胃组织切片中选取510个胃细胞,其中腺癌细胞210个,非癌性细胞300个,测量细胞的10个形态学特征。将所得到的数据随机分成A组(训练组)和B组(测试组)。建立三层BP神经网络,并利用A组数据对神经网络进行训练,再利用A、B两组数据对网络模型进行检验测试。结果BP神经网络对A组细胞识别的灵敏度为99%,特异度为99%,阳性预测值为98%,阴性预测值为99%,识别正确率为98%;对B组细胞识别的灵敏度为99%,特异度为97%,阳性预测值为96%,阴性预测值为99%,识别正确率为98%。ROC曲线下面积为0.99。结论本研究结果显示,BP神经网络用于胃癌细胞识别非常有效,可用于胃癌细胞的自动识别。 Objective To investigate the value of back propagation (BP) neural network for recognizing gastriccancer cell. Methods A total of 510 cells was selected from 308 patients. There were 210 gastricadenocarcinoma cells and 300 non-cancer gastriccells. Ten morphological parameters were measured for each cell. These data were randomly divided into two groups: training dataset (A) and test dataset (B). A threelayer BPneural network was built and trained by using dataset A. The network was then tested with dataset A and B. Results For data A, the sensitivity of network was 99%, specificity 99%, positive predictive value 98%, negative predictive value 99%, and accuracy 99%, For data B, the sensitivity of network was 99%, specificity 97%, positive predictive value 96%, negative predictive value 99%, the accuracy 98%. With receiver operator characteristic(ROC) curve evaluation, the area under ROC curve was 0.99. Conclusion The model based on BP neural network is very effective. A BPneural network can be used for effectively recognizing gastric cancer cell.
出处 《中国循证医学杂志》 CSCD 2007年第9期637-640,共4页 Chinese Journal of Evidence-based Medicine
基金 国防科技大学机电工程与自动化学院创新基金"胃癌细胞识别知识库的自动创建" 湖南省社会科学基金"临床决策信息环境的研究"(编号:06ZC92)
关键词 基于误差反向传播神经网络 胃肿瘤 细胞识别 Back propagation neural network Gastric cancer Cell recognizing
  • 相关文献

参考文献10

  • 1杨育彬,李宁,陈世福,陈兆乾.肺癌分类识别中的神经网络集成技术研究[J].计算机科学,2003,30(9):39-42. 被引量:3
  • 2Celenk M,Yinglei Song ML,et al.Shape classification of malignant lymphomas and leukemia by morphological watersheds and ARMA modeling.Proceedings of the SPIE.The International Society for Optical Engineering,2003,5032:265-276.
  • 3Chen WJ,Meer P,Georgescu B,et al.Image mining for investigative pathology using optimized feature extraction and data fusion.Computer Methods and Programs in Biomedicine,2005,79(1):59-72.
  • 4Fawcett T.ROC Graphs:Notes and Practical Considerations for Researchers[R/OL].Tech.Report HPL-2003-4,2003.[2005] http://www.purl.org/NET/tfawcett/papers/ROC 101.pdf.
  • 5WeissGM.Miningwithrarity:aunifyingframework.ACMSIGKDD Explorations Newsletter,2004,6(1):7-19.
  • 6Chawla NV,Japkowicz N,Kolcz A(editors).ICML'2003 Workshop on Learning from Imbalanced Data Sets[C/OL][ 2003 ].http://www.site.uottawa.ca/-nat/Workshop2003/workshop2003.html.
  • 7Japkowica N (editor).Procof the AAAI'2000 Workshop on Learning form Imbalanced Data Sets.AAAI Tech Report WS-00-05,AAAI,2000.
  • 8Bradley AP.Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms.Pattern Recognition,1997,30(7):1145-1159.
  • 9Chawla NV,Japkowicz N,Kolcz A.Editorial:Special Issue on Learning from Imbalanced Data Sets[C]//ACM SIGKDD Exploration,2004,6(1):1-6.
  • 10Theodoridis S,Koutroumbas K.Pattern Recognition.2nd ed.Elsevier Science,2003:173-174.

二级参考文献13

  • 1Cox G S.Hoare F J.de Jager G.Experiments in lung cancer nodule detection using texture analysis and neural network classitiers.In:Third South African Workshop on Pattern Recognition.Nov.1992.136~142.
  • 2Li X.Bhide S,Kabuka M R.Labeling of MRI Brain Images Using Boolean Neural Network. IEEE Transactions on Medical Imaging, 1996,15 : 628-638.
  • 3Osareh A, Mirmehdi M, Thomas B, Markham R. Automatic Recognition of Exudative Maculopathy using Fuzzy C-Means Clustering and Neural Networks. In: Proc Medical Image Underestanding and Analysis Conf. BMVA Press,July 2001.49-52.
  • 4Shyu C, Brodley C E,Kak A,et al. Assert: a physician-in-the-loop content-based image retrieval system for hrct image databases. Computer Vision and Image Understanding, 1999,74 : 111- 132.
  • 5Zurada J M. Introduction to Artificial Neural Systems. West Publishing Company, 1992.
  • 6Hansen L K, Salamon P. Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993-I001.
  • 7Freeman. Computer Processing of L/he-drawing Image. Computing Surveys, 1974,6(1) :57-97.
  • 8Miyahara M, Yasuhida Y. Mathematical Transform of (R,G,B) Color Data to MunseU(H,V,C)Color Data. Visual Communications and Image Processing'88, SPIE, 1988,1001 : 650- 657.
  • 9Hornik K M, Stinchcombe M, White H. Muhilayer Feedforward Networks Are Universal Approximators. Neural Networks, 1989, 2(2): 359-366.
  • 10Gutta S, Wechsler H. Face Recognition Using Hybrid Classifier Systems. In: IEEE Intl Conf on Neural Networks, NY: IEEE, 1996- 1017-1022.

共引文献2

同被引文献23

  • 1刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 2倪晓宁,董藩.短期经济增长的综合影响因素研究及政策启示[J].工业技术经济,2006,25(1):71-73. 被引量:1
  • 3张莉,郭军.基于边界样本的训练样本选择方法[J].北京邮电大学学报,2006,29(4):77-80. 被引量:15
  • 4Lindenbaum M, Markovitch S, Rusakov D. Selective sampling for nearest neighbor classifiers[J]. Machine Learning, 2004, 54(2): 125-152.
  • 5Mitra P, Murthy C A, Pal S K. Density-based multiscale data condensation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 734-747.
  • 6Friedman M, Last M, Makover Y, et al. Anomaly detection in Web documents using crisp and fuzzy-based cosine clustering methodology[J]. Information Sciences, 2007, 177(2): 467-475.
  • 7DONG Yong-gui, SUN Zhao-yan, JIA Hui-bo. A cosine similarity-based negative selection algorithm for time series novelty detection[J]. Mechanical Systems and Signal Processing, 2006, 20(6): 1461-72.
  • 8Arnia K lizuka I, Fujiyoshi M, et al. DCT sign-based similarity measure -br JPEG image retrieval[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A(9): 1976-1985.
  • 9Mcmahon E M, Korinek J, Yoshifuku S, et al. Classification of acute myocardial ischemia by artificial neural network using echocardiographic strain waveforms[J]. Computers in Biology and Medicine, 2008, 38(4): 416-424.
  • 10Swift D K, Dagli C H. A study on the network traffic of connexion by boeing: Modeling with artificial neural networks[J]. Engineering Applications of Artificial Intelligence,2008,21(8):1113-1129.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部